Abstract:
An erosion-resistant article for use as a component in plasma process chamber. The erosion-resistant article comprises a support and an oxide coating comprising yttrium, which is disposed over the support. The support and the oxide coating preferably have material compositions that differ from one another in coefficient of thermal expansion by no more than 5null10null6/K. Preferred oxide coating compositions include yttria and yttrium aluminum garnet. Preferred supports include alumina supports and aluminum-silicon carbide supports.
Abstract:
Parts, especially those formed of quartz glass, for film-forming devices, plasma-treating devices and the like have a problem of inner pollution of the devices with particles given by dropping of deposit films from the parts, a problem of hermetical sealing reduction due to bonding failure of the parts to other parts, and a problem of energy efficiency reduction due to the heat insulation failure in the parts. Parts having a thermal sprayed quartz glass film formed on a substrate have an increased ability to hold a deposit thereon, and have an increased ability to hermetically bond to other parts. The parts having a thermal sprayed black quartz glass film have an increased ability of heat insulation property. Even when washed with acid, the abilities of the parts do not lower. The parts can be used for a long period of time and their life is long.
Abstract:
A thermal spraying method includes the steps of: (1) preparing a speed-increasing means for adding energy to the heated material or the heating material to increase a flying speed of the material; and (2) adding energy to the heated material or the heating material by the speed-increasing means in such a manner that a flying speed of the heated material or the heating material increases until the material reaches a surface of an object.
Abstract:
A method of manufacturing a product having a sprayed coating film prepares a component having a cylindrical inner surface, prepares a gas spray type spraying gun with a central axis in opposed relationship with the cylindrical inner surface of the component to be aligned with a central axis of the cylindrical inner surface, supplies spraying material to the spraying gun, melts the spraying material with a combustion flame, and travels the spraying gun for translational movement in a traveling direction, corresponding to one of directions of the central axis of the cylindrical inner surface, for forming a sprayed coating film over the cylindrical inner surface while spraying the spraying material, molten with the combustion flame, onto the cylindrical inner surface in a spraying direction oriented in a rearward area of the traveling direction for thereby forming the sprayed coating film over the cylindrical inner surface.
Abstract:
A method of fabricating a process chamber component that has a ceramic form with grains and grain boundary regions. In the method, the component is bead blasted to provide a surface having a relatively low roughness average of less than about 150 microinches. The component is dipped into a solution having a concentration that is sufficiently low to reduce etching of grain boundary regions of the ceramic form. A metal coating is formed over at least a portion of the ceramic form. The component fabricated by this method can tolerate thicker deposits of sputtered material in a sputtering process without the sputtered deposit accumulates causing spalling of the coating of the component.
Abstract:
An abradable coating composition for use on shrouds in gas turbine engines (or other hot gas path metal components exposed to high temperatures) containing an initial porous coating phase created by adding a nullfugitive polymernull (such as polyester or polyimide) to the base metal alloy, together with a brittle intermetallic phase such as null-NiAl that serves to increase the brittle nature of the metal matrix, thereby increasing the abradability of the coating at elevated temperatures, and to improve the oxidation resistance of the coating at elevated temperatures. Coatings having about 12 wt % polyester has been found to exhibit excellent abradability for applications involving turbine shroud coatings. An abradable coating thickness in the range of between 40 and 60 ml provides the best performance for turbine shrouds exposed to gas temperatures between 1380null F. and 1850null F. Abradable coatings in accordance with the invention can be used for new metal components or to repair existing equipment.
Abstract:
A method for the synthesis of an electrode (1), and the resulting article (1) therefrom, comprising coating an active material feedstock (3) with an additive material suitable for preventing thermal decomposition of said feedstock (3) during thermal spray, thermal spraying the coated feedstock (3) onto a substrate (2) for an electrode, thereby forming a coating on the substrate (2), thereby providing an electrode (1).
Abstract:
A process for applying a thermal barrier coating to a machine component including: a. applying a plurality of layers of the thermal barrier coating on the component, utilizing a nozzle at a first distance from the component; and b. applying an outer layer of the thermal barrier coating on the component, with the nozzle at a second distance from the component, greater than the first distance.
Abstract:
A process for the preparation of a sputtering target which comprises sub-stoichiometric titanium dioxide, TiOx, where x is below 2 having an electrical resistivity of less than 0.5 ohm.cm, optionally together with niobium oxide, which process comprises plasma spraying titanium dioxide, TiO2, optionally together with niobium oxide, onto a target base in an atmosphere which is oxygen deficient and which does not contain oxygen-containing compounds, the target base being coated with TiOx, which is solidified by cooling under conditions which prevent the sub-stoichiometric titanium dioxide from combining with oxygen.
Abstract:
The invention relates to a process for producing a surface layer with embedded inter-metallic phases, which is distinguished by the fact that a layer comprising a metal and a ceramic is applied to a substrate element, that a reaction takes place between the metal and the ceramic of the layer as a result of energy being introduced during the application of the layer or as a result of a subsequent introduction of energy, and as a result the surface layer is produced, with inter-metallic phases being formed.