Abstract:
The invention relates to a process for repairing coated substrate surfaces comprising the following successive steps: a) optionally preparing a blemished area to be repaired, b) providing a backing film coated on one side with an uncured or at least partially cured coating layer of a coating composition curable by means of high energy radiation, c) applying the backing film with its coated side onto the blemished area to be repaired, d) irradiating the coating applied in this manner onto the blemished area to be repaired with high energy radiation and e) removing the backing film, wherein the coating is irradiated through the backing film and/or after removing the backing film.
Abstract:
A method for treating a deployed conductive translucent layer that includes exposing the layer to ultra-violet (nullUVnull) radiation for the design purpose of increasing the conductivity of the layer. The layer advantageously includes a metal oxide dopant such as an indium-tin-oxide. The invention includes exposing the layer to UV radiation both during and/or after curing. The exposure to UV radiation has been shown to increase the conductivity of the layer without appreciably affecting the translucence. In one embodiment, the method includes confining the exposure to UV radiation to preselected zones on the layer so as to create pathways of increased conductivity on the layer.
Abstract:
A hook tape fabrication method includes the steps of coating nylon yarns with a layer of water repellent, coating the repellent-coated nylon yarns thus obtained with a layer of PU rubber, weaving the nylon yarns thus obtained into loops, and cutting the loops into hooks.
Abstract:
A photoresist-free method for making patterned films of metal oxides, metals, or other metal containing compounds is described. The method involves applying a thin film coating of a metal complex, resulting in the formation of a liquid crystal film. This film can be photolyzed resulting in a chemical reaction which deposits a metal or metal oxide film.. The metal complex used is photoreactive and undergoes a chemical reaction in the presence of light of a suitable wavelength. The end product of the reactions depends upon the atmosphere in which the reactions take place. Metal oxide films may be made in air. Patterned films may be made by exposing only selected portions of the film to light. Patterns of two or more materials may be laid down from the same film by exposing different parts of the film to light in different atmospheres.
Abstract:
It is an object of the present invention to provide a method of coating a plastic molding which is appropriately applicable to various plastic substrates, an ultraviolet-curable under coating for metal evaporation, which is to be used in that method of coating, and a plastic molding obtained by that method of coating. A method of coating a plastic molding comprising steps of applying an ultraviolet-curable under coating for metal evaporation to a plastic substrate, then subjecting the coated substrate to ultraviolet irradiation to form an under coating film, evaporating a metal on the coating film and applying a clear coating to the metal surface to form a clear coating film layer, wherein the ultraviolet-curable under coating for metal evaporation comprises an acrylic resin comprising, as a constituent, at least one monomer (a) selected from among dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate and isobornyl (meth)acrylate, a compound having at least two (meth)acryloyl groups within the molecule, and a photopolymerization initiator.
Abstract:
Coating compositions, methods and articles of manufacture comprising a nanoparticle system employing same to impart surface modifying benefits for all types of soft surfaces, and in some cases, hard surfaces, are disclosed. In some embodiments, dispersement of nanoparticles in a suitable carrier medium allows for the creation of coating compositions, methods and articles of manufacture that create multi-use benefits to the modified surfaces. These surface modifications can produce long lasting or semi-permanent multi-use benefits that, in some embodiments, may include at least one of the following improved surface properties: cleaning, wettability, liquid strike-through, comfort, stain resistance, soil removal, malodor control, modification of surface friction, reduced damage to abrasion and color enhancement, relative to the surfaces unmodified with such nanoparticle systems.
Abstract:
A method of forming a film on a base member disposed in a reactor comprises introducing an organic gas into the reactor for use as a starting material for the film, and a dilute gas including an inert gas, irradiating a surface of the base member with vacuum ultraviolet rays; and forming the film on the base member under a normal pressure atmosphere.
Abstract:
A process is disclosed for applying an organic high solids finish coating to a preprimed metallic coated steel sheet. The resulting process is environmentally efficient, cost effective and yields a durable finish coated steel sheet article. The process also includes steps for applying a metallic coating and an organic primer in a single continuous process to form a preprimed steel sheet article. The primer may be a waterborne coating that is applied directly to the pristine metallic coated sheet.
Abstract:
A test tube comprises a tube body of unitary construction including an enclosed sidewall and an integral bottom surface that together define a tubular container having an open top. The bottom surface has a concave interior surface and a planar exterior surface upon which machine readable data is encoded within a multi-layered opaque coating that is deposited onto the planar exterior surface to uniquely identify the test tube. The machine readable data is preferably an open (i.e., non-proprietary) data matrix code. This code is applied to the test tube by depositing a multi-layer coating onto the planar exterior of the tube bottom surface. The multi-layer coating may include a first layer of opaque material that is deposited onto the planar exterior surface, and a second layer of opaque material that is deposited onto the first layer. The machine readable code is formed in the multi-layered coating by removing portions of the second layer.
Abstract:
A UV curable powder coating composition having a binder containing A) 60-90% by weight of at least one amorphous urethane acrylate and B) 10-40% by weight of at least one crystalline urethane acrylate; and having an auxiliary, crosslinks to form a light- and weather-stable paint film that possesses excellent gloss.