Abstract:
An optical system includes both a microspot broadband spectroscopic ellipsometer and a photoacoustic film thickness measurement system that are supplied laser light by the same laser light source. One of the systems makes a measurement, the result of which is used to adjust a parameter of the other system; e.g. the ellipsometer measures thickness and the photoacoustic system uses the thickness result to measure the speed of sound. In one version, the ellipsometer converts the laser beam to a broad-spectrum beam that provides higher intensity.
Abstract:
In a dielectric constant measuring apparatus provided are a light source for irradiating a substrate with light in a visible or near-ultraviolet wavelength range, a spectroscope for receiving reflected light from the substrate, and a first optical characteristic acquiring unit for acquiring the spectral reflectance of the substrate. Further are provided therein a light source for irradiating the substrate with light in an infrared wavelength range, a spectroscope for receiving transmission light from the substrate, and a second optical characteristic acquiring unit for acquiring the spectral transmittance of the substrate. The dielectric constant of a dielectric film on the substrate is obtained by a first parameter set calculation unit, a second parameter set calculation unit and a dielectric constant calculation unit, using the spectral reflectance and spectral transmittance of the substrate. It is thereby possible to achieve a noncontact measurement of the dielectric constant of the dielectric film on the substrate.
Abstract:
Scratches, pits and particles which are smaller or larger than the beam size may be measured and identified by a dual beam technique. This invention uses a pair of orthogonally oriented laser beams, one in the radial and one in the circumferential direction. The scattered light from radial and circumferential beams allows the detection and classification of particles, pits and scratches.
Abstract:
A practical system and method for precisely measuring low-level birefringence properties (retardance and fast axis orientation) of optical materials (26). The system permits multiple measurements to be taken across the area of a sample to detect and graphically display (100) variations in the birefringence properties across the sample area. In a preferred embodiment, the system incorporates a photoelastic modulator (24) for modulating polarized light that is then directed through a sample (26). The beam (nullBinull) propagating from the sample is separated into two parts, with one part (nullB1null) having a polarization direction different than the polarization direction of the other beam part (nullB2null). These separate beam parts are then processed as distinct channels. Detection mechanisms (32, 50) associated with each channel detect the time varying light intensity corresponding to each of the two parts of the beam. This information is combined for calculating a precise measure of the retardance induced by the sample, as well as the sample's fast axis orientation.
Abstract:
In a polarization compensator for converting a polarization state of a lightwave, and a wavelength division multiplexing apparatus using same, a controller of the polarization compensator controls a rotator to orient a polarization plane of an input lightwave to a polarization plane of a reference polarizer. Also, the controller receives an output lightwave from the polarization compensator, of the above-mentioned present invention, which inputs the input lightwave through the rotator and a first null wave plate, through a second null wave plate and a polarizer having the polarization plane set in the reference direction, and the input lightwave is compensated to a linear polarization having the polarization plane of the reference direction based on a received polarization signal. Furthermore, a plurality of polarization compensators and a coupler are connected directly or with a connector so as to prevent the polarization planes of the lightwaves whose wavelengths are adjoining from coinciding with each other, and preferably the polarization compensators and the coupler are connected directly or with connectors so that the polarization planes are orthogonal.
Abstract:
An apparatus is provided which is capable of measuring the polarization mode dispersion of an objective without changing a wavelength of an angle frequency of light incident upon the objective. The apparatus comprises a variable wavelength light source 10 generating an incident light, a light modulator 54 modulating the incident light on the basis of the frequency f of the signal for modulation oscillated from an oscillator 52 and outputting the modulated light, a polarization controller 20 polarizing the modulated light, changing a polarizing condition so that an modulated light polarizing is passed through the axes having a minimum and a maximum propagation group velocity of the light in DUT 30, and outputting the polarized light for incidence, a phase comparator 64 measuring the phase difference null between a phase nulls of the transmitted light which the polarized light for incidence is transmitted through DUT 30 and a phase nullr of the signal for modulation and a polarization mode dispersion measuring unit 66 calculating the polarization mode dispersion of DUT 30 from the phase difference null. The apparatus is capable of measuring of the polarization mode dispersion without changing the wavelength of the incident light and if the wavelength of the incident light is changed, it is capable of measuring the wavelength dependent characteristic of the polarization mode dispersion.
Abstract:
A spectroscopic ellipsometer is provided for measuring a small target surface with a high degree of precision. An irradiating optical system provides a polarized light to the surface of the target, while a detecting optical system is provided with a higher F-number for collecting the reflected light from the target surface to introduce it into the spectrometer for measuring a thickness of a thin film on the surface of the sample in accordance with the polarization state of change of the detected light rays.
Abstract:
A gallery of seed profiles is constructed and the initial parameter values associated with the profiles are selected using manufacturing process knowledge of semiconductor devices. Manufacturing process knowledge may also be used to select the best seed profile and the best set of initial parameter values as the starting point of an optimization process whereby data associated with parameter values of the profile predicted by a model is compared to measured data in order to arrive at values of the parameters. Film layers over or under the periodic structure may also be taken into account. Different radiation parameters such as the reflectivities Rs, Rp and ellipsometric parameters may be used in measuring the diffracting structures and the associated films. Some of the radiation parameters may be more sensitive to a change in the parameter value of the profile or of the films then other radiation parameters. One or more radiation parameters that are more sensitive to such changes may be selected in the above-described optimization process to arrive at a more accurate measurement. The above-described techniques may be supplied to a track/stepper and etcher to control the lithographic and etching processes in order to compensate for any errors in the profile parameters.
Abstract:
Apparatus for acquiring an image of a specimen comprising a cassette having an optical portion holding a specimen array on a TIR surface and being removably matable to a processing portion having a polarized light beam source and a processing polarization-sensitive portion to image the spatially distributed charges in polarization of the specimen array. In one form the array optical portion comprises a transparent slide having a bottom surface with first and second gratings located to direct polarized light to the TIR surface and to direct light reflected by that (TIR) surface to an imager, respectively. The apparatus may include a flow cell integral with the optical portion as well as means for selecting the direction and wavelength of the polarized light.
Abstract:
The apparatus allows monitoring layer depositions in a process chamber. The apparatus has a light source, a sensor element, and at least one light detector. The sensor element is suitably configured in order to influence the intensity of the light beam measured by the detector by the thickness of the layer growing on the sensor element. The novel monitoring method for measuring the transmitted light intensity utilizes the apparatus. The sensor element has a continuous opening through which the intensity of the light is observed as a function of the opening grown over by the thickness of the growing layer.