Abstract:
This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.
Abstract:
An infrared beam is applied into an infrared transmitting substrate 10 disposed in an environment to be measured; the infrared beam which has undergone multiple internal reflections in the infrared transmitting substrate 10 and exited from the infrared transmitting substrate 10 is detected; the detected infrared beam is spectroscopically analyzed to measure a species and/or a quantity of the substance in the environment present near the infrared transmitting substrate 10; and a species and/or a concentration of the substance in the environment to be measured are measured based on the species and/or the quantity of the substance in the environment present near the infrared transmitting substrate 10. Thus, the substances in the environment, such as organic contaminants, etc., present in the atmosphere can be identified, or their concentrations can be measured, with high sensitivity and realtime.
Abstract:
A temperature sensor utilizing optical temperature measuring techniques is constructed to make firm contact with a surface whose temperature is being measured, an example application being the monitoring of semiconductor wafers or flat panel displays while being processed. A cap is mounted near but spaced apart from an end of a lightwave guide, with a resilient element that applies force of the cap against a surface whose temperature is being measured as the cap is urged toward the optical fiber end. An optical temperature sensing element, such as luminescent material or a surface of known emissivity, is carried within the cap. A bellows with a closed end conveniently serves as both the cap and the resilient element. An alternative temperature measuring device installs an optical temperature sensing material within a test substrate behind an optical window, and then views the sensing material through the window.
Abstract:
A lens array for directing infrared light or radiation to a passive infrared detector having at least two Fresnel lenses mounted on or incorporated into the lens array. Each of the lenses has a different infrared detection pattern and the lenses on the array are adapted to be selectively indexed so that the infrared detection pattern of the array is altered by the indexing. The indexing may be accomplished by rotating the lens array or by the linear movement of the lens array.
Abstract:
A fiber optic cable is used as a distributed temperature sensing (DTS) transducer for temperature profile measurements in a protective underground duct in which a high voltage (HV) cable has already been laid. The sensing cable is not incorporated into the power cable itself, and in some installations does not have direct physical contact with the HV cable. The sensing cable is installed externally (along side) of the HV power cable, either in direct surface contact with the HV cable, or alternatively, the fiber optic sensing cable is installed in a small diameter guide tube that is placed in the upper annulus between the HV cable and the protective duct. The sensing fiber and one or more guide tubes are installed in a loose bundle at least in part by fluid drag forces (blowing with pressurized air) using conventional cable launching equipment. Large diameter guide tubes are placed on opposite sides of the HV cable in a wedging position that blocks shifting movement of the small guide tubes and optical fibers down into the lower cusp-shaped space between the HV cable and the protective duct.
Abstract:
The sensitivity adjusting equipment applied to a photoelectric smoke detector is provided. The photoelectric smoke detector includes a luminous component for providing an input light and a detecting component for receiving an even output light. The sensitivity adjusting equipment includes a light-scattering device having a scattering component and an adjustable hole for scattering the input light evenly and adjusting an intensity of the input light so as to output the even output light to the detecting component. The sensitivity adjusting equipment also includes a movable platform having a first brace connected to the photoelectric smoke detector and a supporting base having a second brace connected to the light-scattering device. The movable platform is moved to make the photoelectric smoke detector and the light-scattering device combined to adjust the sensitivity of the photoelectric smoke detector.
Abstract:
A portable thermal imager has a shock-absorbing lens mount that minimizes the transfer of the impact forces to the fragile lens. The lens of the portable thermal imager is encased within a circumferential grommet and then received in a cavity defined by the housing such that the lens is essentially suspended within the cavity. Since the lens is essentially suspended, little or no force is translated to the lens if the thermal imager is dropped or otherwise impacted.
Abstract:
Apparatus and techniques for detecting malfunctions, anomalies and attacks upon optical devices of a transparent all-optical network, including amplified links and optical nodes, of the network. A portion of an input signal of the optical device and a portion of an output signal from the optical device are coupled to an optical processing unit and a an optical to electrical signal converter. The electrical output signal of the converter is coupled to an electronic processing unit which generates a difference signal which is a function of the input and output signal portions for comparison to a predetermined set of parameters. The result of the comparison is an alarm signal indicative of the occurrence of a malfunction. Also described is an optical comparator capable of generating the difference signal which is indicative of perturbations in the optical device.
Abstract:
An IR camera comprises an IR Focal Plane Array having a number of detector elements as sensor devices, an optical system focusing an object onto the Focal Plane Array, and a signal processing system connected to the Focal Plane Array. The camera also has a modular structure comprising a camera housing provided with the Focal Plane Array and the signal processing system, an absorbent/emitting shielding device connected to the camera housing, and an optical focusing system removably mounted to the shielding device.
Abstract:
A system for measuring turbine bucket temperature in a gas turbine engine includes a plurality of optical detectors, such as a pyrometer and a spectrometer, and an optical switch for selectively directing radiation from turbine engine sight glass to any one of the optical detectors along a common line of sight. The optical switch preferably includes first and second blocks, with the optical detectors being disposed in the second block. A rotor is mounted between the first and second blocks for rotation about a rotational axis, and a fiber optic cable is provided having a first end located on the rotational axis and a second end offset from the rotational axis. Rotation of the rotor selectively positions the second end of the fiber optic cable adjacent to any one of the optical detectors.