Abstract:
PROBLEM TO BE SOLVED: To solve such problems that discharge efficiency drops by organic materials, moisture, and oxygen remaining in a vacuum chamber of a vacuum tube having the vacuum chamber in which discharge gas is sealed. SOLUTION: The number of water molecules, the number of organic gas molecules, and the number of oxygen molecules remaining in the vacuum chamber are selected in relation to the number of molecules of gas contributing to discharge to reduce bad influence caused by the remaining gas. Concretely, by increasing the number of molecules of the gas for discharge by about more than about 10 times the number of molecules of the remaining gas, the bad influence by the remaining gas is decreased. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
The present invention discloses a field emission type cold cathode incorporated device, which comprises a field emission type cold cathode having a number of electron emitting sections, said sections having sharp projections, and a vacuum tank for placing the field emission type cold cathode in a vacuum environment. In this device, a partial pressure of particular noble gas in residual gas contained in the vacuum tank is set equal to or lower than C/I (C is a constant and I is a maximum emission current value per one of the number of electron emitting sections during driving of the field emission type cold cathode). Also, in order to set a partial pressure of the particular noble gas in the residual gas contained in the vacuum tank equal to C/I (C: constant) or lower, a partial pressure of the particular residual gas in the vacuum tank is monitored by a mass analyzer during vacuum tank exhaustion.
Abstract:
A device for releasing water vapor in electron tubes comprises a holder and a water vapor releasing material carried by said holder. In one embodiment the water vapor releasing material is a hydroxide or hydrated oxide of a metallic element in combination with a binder. In another embodiment it is hydrated alumina.
Abstract:
Provided is a phosphor for a dispersion-type EL that may be manufactured in a simple process and may provide stable, high brightness and light emission efficiency. The phosphor for a dispersion-type EL according to the present invention includes a mixture of an electron-accepting phosphor particle (4A) and an electron-donating phosphor particle (4B). The electron-accepting phosphor particle (4A) includes a base particle and an acceptor element added thereto, and the electron-donating phosphor particle (4B) includes a base particle and a donor element added thereto. For example, the base particle is a ZnS particle, the acceptor element is Cu, and the donor element is Cl or Al.
Abstract:
A computing device (102) includes multiple antennas, one antenna for wireless communication and another antenna for wireless charging. Each antenna is one of multiple coils that are co-located at a particular area of a housing of the computing device. These multiple coils can be configured in various different manners, and are configured such that a first of the multiple coils has an outer periphery and an inner boundary. A second of the multiple coils includes a first portion, a second portion, and a third portion. The first portion of the second coil is positioned about the outer periphery of the first coil, the second portion of the second coil is positioned within the inner boundary of the first coil, and the third portion of the second coil traverses the first coil and interconnects the first and second portions of the second coil.