Abstract:
A double-glass photovoltaic module includes: a body, where the body includes a first glass layer, a first encapsulation layer, a cell group layer, a second encapsulation layer, and a second glass layer that are sequentially disposed in a laminated manner, the cell group layer extracts a current by using a bus bar, and the bus bar is led out between the first glass layer and the second glass layer and from an edge of the body; a frame, encapsulated at a periphery of the body by a sealant and having a notch; and a connection box, disposed at the notch, and sealed and connected to the body the frame, and the bus bar is electrically connected to the connection box.
Abstract:
A connecting device for connecting a vehicle sub-frame and a vehicle body and a vehicle comprising the connecting device are also provided. The connecting device comprises a first end adapted to be fastened onto the vehicle sub-frame, and a second end adapted to be fastened onto the vehicle body, and the second end has at least one first branch adapted to be fastened onto a side member of the vehicle body and at least one second branch adapted to be fastened onto a bottom floor of the vehicle body.
Abstract:
A wheel-speed sensor mounting device may be provided. The wheel-speed sensor mounting device includes a reducer case having a first mounting hole, a mounting shell mounted within the first mounting hole and having a first end extending into the reducer case and a second end, a wheel-speed sensor mounted within the mounting shell and having a first end extending out of the first end of the mounting shell and opposing to a sensing metal ring mounted in the reducer case and a second end having a lead-out wire, and a sealing member for sealing the second end of the mounting shell. The lead-out wire passes through the sealing member and extends out of the reducer case.
Abstract:
An LED lamp is provided. The LED lamp includes a base; a heat radiation member disposed on the base and having a cavity therein; an LED module disposed on a bottom wall of the cavity; and a fixing frame mounted in the cavity so as to press the LED module on the bottom wall of the cavity.
Abstract:
An electric vehicle running control system is provided. The electric vehicle running control system comprises a heating circuit coupled with an in-vehicle battery and configured to heat the in-vehicle battery. The vehicle running control system further comprises a load capacitor and a first current storage element. The first current storage element may be coupled with the load capacitor and the heating circuit respectively configured to reduce interference between the heating circuit and the load capacitor.
Abstract:
An integrated hybrid power assembly and a vehicle including the same are provided. The integrated hybrid power assembly includes a transmission comprising a front housing and a rear housing, a drive motor comprising a motor housing integrated with the rear housing of the transmission and a motor cover mounted to the motor housing, a speed reducer comprising a reducer housing, which is fixedly connected to the rear housing of the transmission and integrated with the motor cover of the drive motor, and a speed reducer cover mounted to the reducer housing; and a starting motor mounted to the transmission.
Abstract:
A driving circuit for an IGBT module is provided. The driving circuit includes: a gate driving resistor connected with the IGBT module; a driving module connected with the gate driving resistor; an integrating circuit connected with the driving module, in which the integrating circuit comprises an equivalent resistor and a first capacitor connected in series with the equivalent resistor, and a time constant of the integrating circuit is adjusted by changing a resistance of the equivalent resistor; a first optical coupler connected with the integrating circuit; and a micro control unit, connected with the first optical coupler.
Abstract:
A film and a method for preparing the film are provided. A substrate is provided, and a film is formed on at least a part of a surface of the substrate by magnetron sputtering a target under a protective gas and a reactive gas. The target includes polytetrafluoroethylene and magnesium fluoride, and the reactive gas includes at least one selected from a group consisting of CF4 and SiF4.
Abstract:
A transmitting device, a wireless charging system comprising the transmitting device and a method for controlling a charging process of the wireless charging system are provided. The transmitting device comprises: a transmitting coil configured to transmit an electric energy of the transmitting device; an oscillation and FM module configured to generate an LC resonance between the transmitting coil and the oscillation and FM module and to adjust a capacitance of the LC resonance so as to change a resonant frequency of the LC resonance; a first detecting module configured to detect a voltage and a current of the transmitting device; a control module configured to output a control signal to control the resonant frequency of the LC resonance according to a predetermined FM mode; a first communicating module configured to communicate with the receiving device wirelessly; and a power module configured to supply a drive power to the transmitting device.
Abstract:
A method for controlling a rotation rate of an electric motor includes the s following steps: determining if an absolute value of a difference between an objective rotation rate of the electric motor and an actual rotation rate of the electric motor is greater than or equal to a predetermined value, and if yes, compensating a q axis current of the electric motor to adjust the rotation rate.