Abstract:
An electric vehicle running control system is provided. The electric vehicle running control system comprises: a heating circuit (11); a load capacitor (C12); a switchgear (20) connected with the heating circuit (11) and the load capacitor (C12) respectively; and a switch control module (200) connected with the switchgear (20) for controlling the switchgear (20) to switch off when the heating circuit (11) is connected with an in-vehicle battery (5) to form a heating loop for heating the in-vehicle battery (5).
Abstract:
An electric vehicle running control system is provided. The electric vehicle running control system comprises: a heating circuit (11); a load capacitor (C12); a switchgear (20) connected with the heating circuit (11) and the load capacitor (C12) respectively; and a switch control module (200) connected with the switchgear (20) for controlling the switchgear (20) to switch off when the heating circuit (11) is connected with an in-vehicle battery (5) to form a heating loop for heating the in-vehicle battery (5).
Abstract:
An electric vehicle running control system is provided. The electric vehicle running control system comprises a heating circuit coupled with an in-vehicle battery and configured to heat the in-vehicle battery. The vehicle running control system further comprises a load capacitor and a first current storage element. The first current storage element may be coupled with the load capacitor and the heating circuit respectively configured to reduce interference between the heating circuit and the load capacitor.
Abstract:
An electric vehicle running control system is provided. The electric vehicle running control system comprises a heating circuit coupled with an in-vehicle battery and configured to heat the in-vehicle battery. The vehicle running control system further comprises a load capacitor and a first current storage element. The first current storage element may be coupled with the load capacitor and the heating circuit respectively configured to reduce interference between the heating circuit and the load capacitor.
Abstract:
Certain embodiments of the present invention provide a battery heating circuit, wherein: the battery comprises a first battery and a second battery; the heating circuit comprises a first switch unit, a second switch unit, a damping component R1, a damping component R2, a current storage component L3, a current storage component L4, a switching control module and an energy storage component V1; the first battery, the damping component R1, the current storage component L3, the energy storage component V1 and the first switch unit are connected in series to constitute a first charging/discharging circuit; the second battery, the damping component R2, the current storage component L4, the energy storage component V1 and the second switch unit are connected in series to constitute a second charging/discharging circuit.
Abstract:
Certain embodiments of the present invention provide a battery heating circuit, wherein: the battery comprises a first battery E1 and a second battery E2, the heating circuit comprises a first switch unit 10, a second switch unit 20, a damping component R1, a damping component R2, a current storage component L1, a current storage component L2, a switching control module 100 and a charge storage component C; the first battery, the damping component R1, the current storage component L1, the first switch unit 10 and the charge storage component C are connected in series to form a first charging/discharging circuit; the second battery, the damping component R2, the current storage component L2, the charge storage component C and the second switch unit 20 are connected in series to form a second charging/discharging circuit.
Abstract:
Certain embodiments of the present invention provide a battery heating circuit, comprising a switch unit 1, a switching control module 100, a damping component R1, an energy storage circuit, and an energy superposition unit; the energy storage circuit is configured to connect with the battery to form a loop, and comprises a current storage component L1 and a charge storage component C1; the damping component R1, the switch unit 1, the current storage component L1, and the charge storage component C1 are connected in series; the switching control module 100 is connected with the switch unit 1, and is configured to control ON/OFF of the switch unit 1, so as to control the energy flowing between the battery and the energy storage circuit.
Abstract:
Certain embodiments of the present invention provide a battery heating circuit, comprising a switch unit 1, a switching control module 100, a damping component R1, an energy storage circuit, a freewheeling circuit 20, and an energy superposition unit; the energy storage circuit is configured to connect with the battery to form a loop, and comprises a current storage component L1 and a charge storage component C1; the damping component R1, the switch unit 1, the current storage component L1, and the charge storage component C1 are connected in series; the switching control module 100 is connected with the switch unit 1, and is configured to control ON/OFF of the switch unit 1, so as to control the energy flowing between the battery and the energy storage circuit; the energy superposition unit is connected with the energy storage circuit.
Abstract:
Certain embodiments of the present invention provide a battery heating circuit, comprising a switch unit 1, a switching control module 100, a damping component R1, an energy storage circuit, and an energy superposition unit; the energy storage circuit is configured to connect with the battery to form a loop, and comprises a current storage component L1 and a charge storage component C1; the damping component R1, the switch unit 1, the current storage component L1, and the charge storage component C1 are connected in series; the switching control module 100 is connected with the switch unit 1, and is configured to control ON/OFF of the switch unit 1, so as to control the energy flowing between the battery and the energy storage circuit.
Abstract:
Certain embodiments of the present invention provide a battery heating circuit, comprising a switch unit 1, a switching control module 100, a damping component R1, an energy storage circuit, a freewheeling circuit 20, and an energy superposition unit; the energy storage circuit is configured to connect with the battery to form a loop, and comprises a current storage component L1 and a charge storage component C1; the damping component R1, the switch unit 1, the current storage component L1, and the charge storage component C1 are connected in series; the switching control module 100 is connected with the switch unit 1, and is configured to control ON/OFF of the switch unit 1, so as to control the energy flowing between the battery and the energy storage circuit; the energy superposition unit is connected with the energy storage circuit.