Abstract:
In detection and sensing, light is transmitted through layers or structures that vary laterally, such as with a constant gradient or a step-like gradient. After transmission, a position of a transmitted portion of the light or of output photons can be used to determine wavelength change or to obtain other photon energy information. The light can be received, for example, from a stimulus-wavelength converter such as an optical fiber sensor or another optical sensor. A component that propagates the light from the converter to a transmission structure can spread the light across the transmission structure's entry surface. At the exit surface of the transmission structure, photosensor components can sense or detect transmitted light or output photons, such as with a photosensor array or a position sensor. A photosensed quantity can be compared, such as with another photosensed quantity or with a calibration quantity. A differential quantity can be obtained using photosensed quantities.
Abstract:
A blackbody radiation device (110) includes a planar filament emission element (102) and a planar detector (104) for respectively producing and detecting radiation having width dl/l less than about 0.1 to test a sample gas, where l is the wavelength of the radiation; a reflector (108); a window (W); an electrical control (118); and a data output element (116).
Abstract:
A spectroanalytical system for receiving radiation to be analyzed along a first path includes a grating in the first path with periodic faceted grooves for spatially separating the radiation as a function of wavelength. The blaze angles of the faceted grooves are progressively graded. A multielement detector detects radiation spatially separated by the grating. An optical conditioner is disposed in the first path between the grating and a multielement detector.
Abstract:
A spatial filter for an optical system, such as an optical spectrometer, collects and spatially filters light using a fiber bundle having a plurality of fibers disposed therein. At an input end of the fiber bundle, the fibers are typically packed tightly together to optimize the collection efficiency. At an output end, the fibers are spread out from the fiber bundle and arranged within a two-dimensional output area according to a two-dimensional pattern corresponding to a coded aperture function. As a result, the two-dimensional pattern of the output end spatially filters the light collected by the input end. Corresponding methods are also described.
Abstract:
A method of generating a design pattern for a spatial radiation modulator to encode two or more selected spectral components in one or more spectral ranges for the chemometric analysis of a group of analytes. The method includes obtaining a corresponding spectrum for each of the analytes, defining a set of initial spectral windows, constructing a chemometric matrix to relate concentrations of the analytes to intensities of the spectral components, deriving optimized spectral windows, and translating the center wavelength and the bandwidth of each of the optimized spectral windows into a corresponding optimized annular region on the modulator.
Abstract:
A spectral photometer intended for integration purposes includes a measurement head equipped with illumination arrangement including at least one light source for the illumination at an angle of incidence of 45° of a measured object and located in a measurement plane, a pickup arrangement for capturing the measurement light remitted by the measured object at an angle of reflection of essentially 0° relative to the perpendicular to the measurement plane, a spectrometer arrangement including an entry aperture for the spectral splitting of the measurement light captured and fed through the entry aperture, and a photoelectric receiver arrangement exposed to the split measurement light for conversion of the individual spectral components of the measurement light into corresponding electrical signals. It further includes an electronic circuit for control of the light source and forming digital measurement values from the electrical signals produced by the photoelectric receiver arrangement.
Abstract:
A blackbody radiation device (110) includes a planar filament emission element (102) and a planar detector (104) for respectively producing and detecting radiation having width dl/l less than about 0.1 to test a sample gas, where l is the wavelength of the radiation; a reflector (108); a window (W); an electrical control (118); and a data output element (116).
Abstract:
A spatial filter for an optical system, such as an optical spectrometer, collects and spatially filters light using a fiber bundle having a plurality of fibers disposed therein. At an input end of the fiber bundle, the fibers are typically packed tightly together to optimize the collection efficiency. At an output end, the fibers are spread out from the fiber bundle and arranged within a two-dimensional output area according to a two-dimensional pattern corresponding to a coded aperture function. As a result, the two-dimensional pattern of the output end spatially filters the light collected by the input end. Corresponding methods are also described.
Abstract:
A high-density channels detecting device for detecting a sample is provided. The high density detecting-device has a light source for emitting a light beam, a collimator, a beam splitter, and a high-density channels imaging device. The collimator arranged on the beam path is used for collimating the emitted light beam. The beam splitter reflects the light beam incident from the collimator to the sample, and the light beam reflected by the sample passes through the beam splitter. The imaging device receives the light beam passing through the beam splitter, and has a light collector and a multi-channel kernel module for receiving the light beam from the light collector. By using the light collector, the light beam incident to the kernel module is parallel to the optical axis of the kernel module.