Abstract:
A method of determining a physical property of a composite material includes providing a series of composite materials surfacing films, which are subjected to increasing thermal experience to create a set of thermal effect standards, collecting near-IR spectra on those standards, performing data pre-processing and then multivariate calibration on the spectra of the composite materials surfacing films, and using that calibration to predict the thermal effect for samples in question.
Abstract:
A method for sensing a target object using optical mode excitations in microresonators, comprises: preparing at least one cluster including at least two microresonators; obtaining some first spectra of the cluster; adsorbing the target object on a surface of the cluster; obtaining some second spectra of the cluster; and sensing the target object by comparing a lineshape of the first spectra with a lineshape of the second spectra.
Abstract:
A system and method of determining an attribute of a biological tissue sample or a drug delivery device. A sample is illuminated with substantially monochromatic light to thereby generate Raman scattered photons. The Raman scattered photons are assessed to thereby generate a spectroscopic data set wherein said spectroscopic data set comprises at least one of: a Raman spectra and a spatially accurate wavelength resolved image. The spectroscopic data set is evaluated to determine at least one of: an attribute of a biological tissue sample and a drug delivery device. In one embodiment, the biological tissue comprises arterial tissue. In another embodiment, the drug delivery device is a drug-eluting stent. In another embodiment, Raman chemical imaging can be used to evaluate a sample and identify at least one of: the tissue, a drug, a drug delivery device, and a matrix associated with a drug delivery device.
Abstract:
An integrated circuit device comprising a memory cell array having a plurality of memory cells arranged in a matrix of rows and columns; multiplexer circuitry, coupled to the memory cell array, comprising a plurality of data multiplexers, each data multiplexer having a plurality of inputs, comprising (i) a first input to receive write data which is representative of data to be written into the memory cells of the memory cell array in response to a write operation, and (ii) a second input to receive read data which is representative of data read from memory cells of the memory cell array, and an associated output to responsively output data from one of the plurality of inputs; and syndrome generation circuitry, coupled to the multiplexer circuitry, to generate: (i) a write data syndrome vector using the write data and (ii) a read data syndrome vector using the read data.
Abstract:
The present disclosure provides for a system and method for assessing chronic exposure of a biological sample, such as a bodily fluid, to an analyte of interest. A biological sample may be illuminated to thereby generate a one or more pluralities of interacted photons. These interacted photons may be detected to thereby generate one or more spectroscopic data sets representative of a biological sample. Spectroscopic data sets generated may be compared to at least one reference data set. Each reference data set may be associated with a known exposure to a known analyte. The present disclosure contemplates that the system and method disclosed herein may be used to analyze exposure of biological samples to at least one analyte over time. Data sets may be obtained at various time intervals to assess changes in a molecular composition as a result of chronic exposure to an analyte.
Abstract:
A method for the detection or determination of a target comprising a plurality of target compounds, or derivatised target compounds, said method comprising: immobilizing said target on a carrier, directing radiation at said target, said radiation being selected to cause said target to emit a relevant radiation, detecting said relevant radiation emitted by said target, and analyzing said detected radiation to identify and/or quantify the plurality of target compounds in said target.
Abstract:
Systems and methods are provided for evaluating and sorting seeds based on characteristics of the seeds. One system includes an imaging and analysis subsystem that collects image data from the seeds and analyzes the collected image data for characteristics of the seeds. This subsystem can include an imaging theater having minors that reflect image data from the seeds to an imaging device for collection. The system can also include an off-loading and sorting subsystem configured to sort the seeds based on their characteristics. And, one method includes illuminating the seeds and collecting image data from the seeds for determining their characteristics. The image data can be collected from at least three portions of the seeds at each of a plurality of sequentially changing spectral wavelengths. In addition (or alternatively), the image data can be collected from top and bottom portions of the seeds using a single imaging device.
Abstract:
The present invention describes a method for measuring the concentrations of species present at one point of a separation unit functioning in simulated moving bed mode (SMB), using an immersing probe located at one point in the unit or on one of the streams entering or leaving said unit, and a thermocouple located in the vicinity of the immersing probe, in which a Raman spectrum obtained using a laser source functioning at a wavelength of 785 nm is utilized.
Abstract:
The present invention relates to a method, apparatus and a system of fast diagnosis of stresses and diseases in higher plants. The proposed methodology is based on the hypothesis of that when a plant is in imbalance; there are changes in its metabolism that render an alteration of the chemical composition of its organs. This chemical alteration leads to a change in the physical properties, such as the fluorescence of the leaves. Due to the complexity of the material of the leaves, the present method proposes that the signal be treated with statistical methods and that the classification is made through softwares based on machine learning. As an example of the application of the invention, the results are shown for the Greening disease in citrus. Currently, Greening is the most severe citrus disease since there is no treatment available for it and due to its high dissemination rate and the fact that it affects all varieties of orange trees, being the diagnosis performed through visual inspection, which renders high subjectivity, high error percentage and the disease is only diagnosed after the expression of the symptoms (˜8 months). During the asymptomatic phase, the infected tree is a source of dissemination of the disease. The present invention can perform the asymptomatic diagnosis of Greening disease from the leaf with a percentage of correct diagnosis higher than 80%.
Abstract:
A first step of measuring a change over time in the spectral transmission spectrum of a measurement sample by its exposure to the light of a light source including an ultraviolet radiation for a preset light exposure time, a second step of performing a correction according to the change over time in the spectral transmission spectrum of the measurement sample based on the result of the measurement obtained by the first step, and a third step of calculating the final in vitro predicted SPF of the measurement sample using the result of the correction obtained by the second step are included.