Abstract:
A spectrophotometric instrument is comprised of a processor, a probe having a tissue engaging surface with an aperture therethrough and a light source producing measurement light signals and optically coupled to the probe via a first optical path. A partially reflective first reflecting member is located in the probe and has a generally elliptical profile positioned to reflect a first portion of the measurement light signals to the tissue aperture and to transmit a second portion of the measurement light signals through the first reflecting member. A second reflecting member is located in the probe and has a generally elliptical profile positioned to reflect the measurement light signals transmitted through the first reflecting member. A second optical path has a distal end positioned to receive the measurement light signals reflected off of the second reflecting member and a proximal end coupled to the processor. A third optical path has a distal end positioned in the probe to receive light signals transmitted through the tissue sample and a proximal end coupled to the processor.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of an object are disclosed. Perimeter receiver fiber optics are spaced apart from a source fiber optic and receive light from the surface of the object being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a data base.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of an object are disclosed. Perimeter receiver fiber optics are spaced apart from a source fiber optic and receive light from the surface of the object being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a data base.
Abstract:
An optical device includes an optical waveguide through which light propagates and a micro-resonator structure including an optical sensor. The micro-resonator is configured to resonate at a wavelength of light that may be transmitted through the optical waveguide. When light at that wavelength is transmitted through the optical waveguide, it resonates in the resonator and is detected by the optical sensor to produce an electrical signal. The optical resonator may be a micro-cylinder, disc or ring resonator and may be coupled to the waveguide via evanescent coupling or leaky-mode coupling. Multiple resonators may be implemented proximate to the waveguide to allow multiple wavelengths to be detected. When the waveguide is coupled to a tunable laser, signals provided by the optical sensor may be used to tune the wavelength of the laser.
Abstract:
Device and method for recording the visual properties of a surface, comprising an imaging device for recording light interaction (reflection or transmission) with a surface, a light source, and a sample area for positioning a sample with a surface to be examined. The imaging device, the light source, and the sample area are arranged in such a way that in one image at least one of the surface properties is recordable as a function of a continuous range of angles between the illumination direction and the observation direction. The imaging device is a CCD camera. The device and method are suitable for imaging and evaluating visual properties which are dependent on the optical geometry, such as flop behavior and gloss.
Abstract:
An optical device includes an optical waveguide through which light propagates and a micro-resonator structure including an optical sensor. The micro-resonator is configured to resonate at a wavelength of light that may be transmitted through the optical waveguide. When light at that wavelength is transmitted through the optical waveguide, it resonates in the resonator and is detected by the optical sensor to produce an electrical signal. The optical resonator may be a micro-cylinder, disc or ring resonator and may be coupled to the waveguide via evanescent coupling or leaky-mode coupling. Multiple resonators may be implemented proximate to the waveguide to allow multiple wavelengths to be detected. When the waveguide is coupled to a tunable laser, signals provided by the optical sensor may be used to tune the wavelength of the laser.
Abstract:
A curved mirrored surface is used to collect radiation scattered by a sample surface and originating from a normal illumination beam and an oblique illumination beam. The collected radiation is focused to a detector. Scattered radiation originating from the normal and oblique illumination beams may be distinguished by employing radiation at two different wavelengths, by intentionally introducing an offset between the spots illuminated by the two beams or by switching the normal and oblique illumination beams on and off alternately. Beam position error caused by change in sample height may be corrected by detecting specular reflection of an oblique illumination beam and changing the direction of illumination in response thereto. Butterfly-shaped spatial filters may be used in conjunction with curved mirror radiation collectors to restrict detection to certain azimuthal angles.
Abstract:
A spectrometer apparatus for determining an optical characteristic of an object or material is disclosed. A probe is positionable to be in proximity to the object or material. First and second receivers are provided on the probe. Light from one or more first receivers is coupled to one or more first optical sensors via a spectral separation implement. Light from one or more second receivers is coupled to one or more second sensors without spectral separation of the light. A light source provides light to the object or material via the probe. A processor coupled to receive one or more signals from the first and second sensors determines the optical characteristic of the object or material and determines a physical position property of the probe with respect to the object or material or a non-color optical property of the object or material. The physical position property may be a distance or angular position of the probe with respect to a surface of the object or material. The non-color optical property may be translucence, gloss, gray level and/or surface texture.
Abstract:
An apparatus and method for non-invasive measurement of glucose in human tissue by quantitative infrared spectroscopy to clinically relevant levels of precision and accuracy. The system includes six subsystems optimized to contend with the complexities of the tissue spectrum, high signal-to-noise ratio and photometric accuracy requirements, tissue sampling errors, calibration maintenance problems, and calibration transfer problems. The six subsystems include an illumination subsystem, a tissue sampling subsystem, a calibration maintenance subsystem, an FTIR spectrometer subsystem, a data acquisition subsystem, and a computing subsystem.
Abstract:
An apparatus and method capable of providing spatially multiplexed IR spectral information simultaneously in real-time for multiple samples or multiple spatial areas of one sample using IR absorption phenomena requires no moving parts or Fourier Transform during operation, and self-compensates for background spectra and degradation of component performance over time. IR spectral information and chemical analysis of the samples is determined by using one or more IR sources, sampling accessories for positioning the samples, optically dispersive elements, a focal plane array (FPA) arranged to detect the dispersed light beams, and a processor and display to control the FPA, and display an IR spectrograph. Fiber-optic coupling can be used to allow remote sensing. Portability, reliability, and ruggedness is enhanced due to the no-moving part construction. Applications include determining time-resolved orientation and characteristics of materials, including polymer monolayers. Orthogonal polarizers may be used to determine certain material characteristics.