Abstract:
Die vorliegende Erfindung betrifft eine opto-elektronische Messeinrichtung (1) für ein Farbmessgerät, insbesondere ein Handfarbmessgerät zur Anwendung an Bildschirmen, umfassend mindestens eine Primäroptik (2), mindestens eine Blende (3), mindestens einen Diffusor (4) und mindestens eine Sensoreinheit (5), wobei die Messeinrichtung (1) derart gestaltet ist, dass bei Vorliegen der Messeinrichtung (1) in einem Messzustand von einem Messobjekt (6) ausgehende Lichtstrahlen (7) auf die Primäroptik (2) treffen und mittels der Primäroptik (2) zumindest teilweise bündelbar sind, wobei die Primäroptik (2) derart relativ zu dem Diffusor (4) angeordnet ist, dass der Diffusor (4) zumindest im Wesentlichen im Fokus der Primäroptik (2) liegt, wobei die Blende (3) in Strahlungsrichtung der Lichtstrahlen (7) betrachtet vor dem Diffusor (4) angeordnet ist und einen Einfallswinkel der Lichtstrahlen (7) begrenzt, wobei die Lichtstrahlen (7) mittels des Diffusors (4) homogenisierbar sind, sodass sie ausgehend von dem Diffusor (4) gleichmäßig auf die Sensoreinheit (5) leitbar sind, wobei die Lichtstrahlen (7) mittels der Sensoreinheit (5) in elektrische Signale umwandelbar sind, dadurch gekennzeichnet, dass wobei die Sensoreinheit (5) von einem integralen Mehrfachspektralsensor gebildet ist, der mindestens drei Teilflächen (8) zur Erfassung jeweils verschiedener Spektralanteile aufweist. Um ein Farbmessgerät hervorzubringen, das im Vergleich zum Stand der Technik möglichst einfach und zuverlässig anwendbar ist, wird erfindungsgemäß vorgeschlagen, dass die Primäroptik (2) mindestens einen zusammenhängenden Linsenkörper (29) aufweist, der zwei Bereiche unterschiedlicher Dispersion und/oder insgesamt mindestens drei refraktiv und/oder reflektiv wirksame Flächen (9) aufweist.
Abstract:
Aspects of the disclosure relate to an Integrated spectral unit including a micro- electro-mechanical systems (MEMS) interferometer fabricated within a first substrate arid a light redirecting structure- integrated on a second substrate, where the second substrate is coupled to the first substrate. The light redirecting structure includes at least one mirror for receiving an input light beam propagating in an out-of-plane direction with, respect to the first substrate and redirecting the input light beam to an in-plane direction with respect to the first substrate towards the MEMS interferometer.
Abstract:
A transmissive optical device comprising: a layer (10) of light absorber material in the solid state, preferably made of a phase-change material with switchable refractive index such as GeSbTe; a partially-reflective layer (12), and a spacer layer (14) between the layer (10) of light absorber material and the partially-reflective layer (12). The spacer layer (14) and an optional cover layer (16) may be transparent conductive ITO layers which may serve to electrically switch the phase of the phase-change material layer (10), thereby switching the transmission/reflection properties of the transmissive optical device.
Abstract:
Optical analysis system and methods that may include a demultiplexing assembly with a photodetector array and a plurality of optical channels configured to prevent crosstalk therebetween. Some optical analysis system embodiments may include a multiplexer operatively coupled to a demultiplexing assembly may be used to split a single optical signal into multiple optical signals, or any other suitable purpose.
Abstract:
Embodiments relate generally to systems and methods for filtering unwanted wavelengths from an IR detector. In some embodiments, it may be desired to remove or reduce the wavelengths absorbed by water, to reduce the effects of water on the detection of the target gas. In some embodiments, a filter glass may be used in the IR detector, wherein the filter glass comprises one or more materials that contain hydroxyls in their molecular structure, and wherein the spectral absorption properties of the filter glass are operable to at least reduce wavelengths of light absorbed by water from the optical, thereby reducing the IR detector's cross sensitivity to water.
Abstract:
Apparatus for hyperspectral imaging, the apparatus including input optics that receive radiation reflected or radiated from a scene, a spatial modulator that spatially samples radiation received from the input optics to generate spatially sampled radiation, a spectral modulator that spectrally samples the spatially sampled radiation received from the spatial modulator to generate spectrally sampled radiation, a sensor that senses spectrally sampled radiation received from the spectral modulator and generates a corresponding output signal and at least one electronic processing device that controls the spatial and spectral modulators to cause spatial and spectral sampling to be performed, receives output signals and processes the output signals in accordance with performed spatial and spectral sampling to generate a hyperspectral image.
Abstract:
The invention relates to methods and to devices for generating multispectral illuminating light having an addressable spectrum, for adaptive multispectral imaging and for capturing structural and/or topographical information of an object or of the distance to an object. The illuminating device comprises a multispectral light source and a modulator for temporal modulation of the individual spectral components of the multispectral light source having modulation frequencies, modulation frequency ranges and/or modulation sequences which are different from one another in each case. The multispectral light source comprises (i) at least one light source (10) having a continuous, quasi-continuous, or frequency comb spectrum and wavelength-dispersive means (12) or (ii) an assembly or array of monochromatic or quasi-monochromatic light sources having emission wavelengths or emission wavelength bands which are different from one another in each case. The modulator comprises (i) at least one electrically controllable three-dimensional light modulator (14) or (ii) a plurality of electronic control modules assigned to the individual monochromatic or quasi- monochromatic light sources. The illuminating device further comprises optical means (18) for assembling the individual modulated spectral components, in order to form the multispectral illuminating light (24) having an addressable spectrum.