Abstract:
A tool for measuring properties of a formation fluid downhole within a wellbore is described. The tool comprises means for obtaining a sample of formation fluid from an isolated portion of an earth formation, means for evaluating a property of said formation fluid, and means allowing correction of systemic changes in said evaluation while said tool is downhole within said wellbore.
Abstract:
The present invention generally pertains to a system, method and kit for the detection and measurement of spectroscopic properties of light from a sample, or the scalable detection and measurement of spectroscopic properties of light from each sample present among multiple samples, simultaneously, wherein the system comprises: an optical train comprising a dispersing element; and an image sensor. The light detected and measured may comprise light scattered from a sample, emitted as chemiluminescence by a chemical process within a sample, selectively absorbed by a sample, or emitted as fluorescence from a sample following excitation.
Abstract:
A tool for measuring properties of a formation fluid downhole within a wellbore is described. The tool comprises means for obtaining a sample of formation fluid from an isolated portion of an earth formation, means for evaluating a property of said formation fluid, and means allowing correction of systemic changes in said evaluation while said tool is downhole within said wellbore.
Abstract:
It is an object to provide a time-domain pulsed spectroscopy apparatus in which time-domain pulsed spectroscopy of multiple samples, states thereof, and so on can be carried out easily and in a short period of time. A time-domain pulsed spectroscopy apparatus of the present invention comprises a pulsed laser light source; a splitting unit configured to split pulsed laser light from the pulsed laser light source into excitation pulsed laser light and detection pulsed laser light; a pulsed-light emitting unit; a detector; a sample holder configured to hold the sample; and sample-unit entrance and exit optical systems configured to guide the pulsed light from the pulsed-light emitting unit to the sample and to guide to the detector pulsed light reflected from or transmitted through the sample due to the irradiation; wherein the time-domain pulsed spectroscopy apparatus further comprises: at least one optical-path-length varying unit for setting a photometric range, disposed in an incident-side optical path from the splitting unit to the pulsed-light emitting unit and/or in a detection-side optical path from the splitting unit to the detector; and at least one optical delay unit for the wave form signal measurement, disposed in the incident-side optical path from the splitting unit to the pulsed-light emitting unit and/or in the detection-side optical path from the splitting unit to the detector.
Abstract:
Werden ein Messstrahlengang und ein separater Referenzstrahlengang gemeinsam über einen Y-Lichtleiter in ein Spektrometer eingekoppelt, so sind die Lichtleitwerte des Messstrahlengangs und des Referenzstrahlengangs jedoch niedrig, da die Eintrittsöffnung des Spektrometers jeweils nur anteilig ausgenutzt werden kann. Ein niedriger Lichtleitwert erfordert lange Integrationszeiten. Die Erfindung soll eine Referenzierung und Messung mit hoher Genauigkeit ermöglichen sowie einen mechanischen Schalter mit geringem Prellen angeben. In einer spektroskopischen Vorrichtung weisen dazu der Referenzstrahlengang (R) und der Messstrahlengang (M) zwischen der Weiche und dem Detektoreingang denselben Lichtleitwert und dieselbe optische Achse auf. So kann die Eintrittsöffnung nahezu vollständig genutzt werden. Bei einem Schalter ist abseits des beweglichen Elements ein zweiter Permanentmagnet derart befestigt, dass in der betreffenden Schaltstellung entgegengesetzte magnetische Pole des ersten Permanentmagneten und des zweiten Permanentmagneten einander berührungslos zugewandt sind und sich bei jeder Auslenkung des beweglichen Elements aus der betreffenden Schaltstellung voneinander entfernen.
Abstract:
Method and apparatus for detecting, by absorption spectroscopy, an isotopic ratio of a sample, by passing first and second laser beams of different frequencies through the sample. Two IR absorption cells are used, a first containing a reference gas of known isotopic ratio and the second containing a sample of unknown isotopic ratio. An interlacer or reflective chopper may be used so that as the laser frequencies are scanned the absorption of the sample cell and the reference cell are detected alternately. This ensures that the apparatus is continuously calibrated and rejects the baseline noise when phase sensitive detection is used.