Abstract:
An unmanned aircraft includes a propulsion system having a diesel or kerosene internal combustion engine and a charger device for engine charging. The propulsion system can be a hybrid propulsion system or a parallel hybrid propulsion system.
Abstract:
An aerial micro-drone having a fixed wing supporting a propulsion device. The micro-drone has wheels for traveling on the ground, which are attached to the side ends of a section of the wing. The rotational axis Y1 of the wheels is located in front of the center of gravity of the micro-drone. The center of gravity of the micro-drone is located in front of the aerodynamic center of the micro-drone. The rotational axis Y1 of the wheels being aligned with the thrust axis of the propulsion device and the wheels are sized such that the radius D/2 thereof is greater than the distance between the rotational axis Y1 of the wheels and the trailing edge of the wing.
Abstract:
A system for facilitating automated landing and takeoff of an autonomous or pilot controlled hovering air vehicle with a cooperative underbody at a stationary or mobile landing place and an automated storage system used in conjunction with the landing and takeoff mechanism that stores and services a plurality of UAVs is described. The system is primarily characterized in that the landing mechanism is settable with 6 axes in roll, pitch, yaw, and x, y and z and becomes aligned with and intercepts the air vehicle in flight and decelerates the vehicle with respect to vehicle's inertial limits. The air vehicle and capture mechanism are provided with a transmitter and receiver to coordinate vehicle priority and distance and angles between landing mechanism and air vehicle. The landing and takeoff system has means of tracking the position and orientation of the UAV in real time. The landing mechanism will be substantially aligned to the base of the air vehicle. With small UAVs, their lifting capacity is limited. Reducing sensing and computation requirements by having the landing plate perform the precision adjustments for the landing operation allows for increased flight time and/or payload capacity.
Abstract:
A multi-engine aircraft is disclosed which is convertible from horizontal flight mode to a vertical flight mode. The aircraft comprises an aircraft fuselage defining a fuselage longitudinal axis, and the first and second wing attached to the fuselage. Each wing defines first and second wing segments. The first segments are translatable about the fuselage longitudinal axis, from a horizontal mode position adjacent the second wing segments to vertical fight mode wherein the first wing segment are substantially offset from the second wing segments. An aircraft propulsion unit is attached to each of the first and second wing segments. The propulsion units attached to a common wing being disposed in substantial axial alignment when the aircraft operates in a horizontal flight mode, and being substantially offset when the aircraft operates in a vertical flight mode. A senor unit is connected to a forward portion of the fuselage.
Abstract:
An aircraft for use in fixed wing flight mode and rotor flight mode is provided. The aircraft can include a fuselage, wings, and a plurality of engines. The fuselage can comprise a wing attachment region further comprising a rotating support. A rotating section can comprise a rotating support and the wings, with a plurality of engines attached to the rotating section. In a rotor flight mode, the rotating section can rotate around a longitudinal axis of the fuselage providing lift for the aircraft similar to the rotor of a helicopter. In a fixed wing flight mode, the rotating section does not rotate around a longitudinal axis of the fuselage, providing lift for the aircraft similar to a conventional airplane. The same engines that provide torque to power the rotor in rotor flight mode also power the aircraft in fixed wing flight mode.
Abstract:
The present invention relates to a device for generating aerodynamic lift and in particular an aircraft (100) for vertical take-off and landing. A wing arrangement (110) comprises at least one propulsion unit (111), wherein the propulsion unit (111) comprises a rotating mass which is rotatable around a rotary axis (117). The wing arrangement (110) is mounted to a fuselage (101) such that the wing arrangement (110) is tiltable around a longitudinal wing axis (112) of the wing arrangement (110) and such that the wing arrangement (110) is rotatable with respect to the fuselage (101) around a further rotary axis that differs to the longitudinal wing axis (112). An adjusting mechanism adjusts a tilting angle of the wing arrangement (110) around the longitudinal wing axis (112) under influence of a precession force (Fp) which forces the wing arrangement (110) to tilt around the longitudinal wing axis (112).
Abstract:
The various embodiments of the present invention provide an unmanned aerial vehicle comprising a hemispherical body, a brushless type electrical, a propeller, a plurality of wingtip devices, a plurality of servo motors and each of the plurality of the servo motors is connected to each of the plurality of the wingtip devices respectively, a plurality of carbon rods, and a casing. The brushless type electrical motor provides a lifting force for a vertical take-off and landing (VTOL) and the plurality of wing tip devices are classified into three types of wing tip devices and the three types of wing tip devices are controlled by the respective servo motors to control yaw, pitch and roll movements thereby stabilizing and controlling the movement of an aircraft.
Abstract:
The respective motors of the drone (10) can be controlled to rotate at different speeds in order to pilot the drone both in attitude and speed. A remote control appliance produces a command to turn along a curvilinear path, this command comprising a left or right turning direction parameter and a parameter that defines the radius of curvature of the turn. The drone receives said command and acquires instantaneous measurements of linear velocity components, of angles of inclination, and of angular speeds of the drone. On the basis of the received command and the acquired measurements, setpoint values are generated for a control loop for controlling motors of the drone, these setpoint values controlling horizontal linear speed and inclination of the drone relative to a frame of reference associated with the ground so as to cause the drone to follow curvilinear path (C) at predetermined tangential speed (u).
Abstract:
The invention relates to aeronautical engineering, in particular to methods of flight due to creating of forces on air propellers, namely using thrust vectoring of direction and amount of force created by air propellers of opposite rotation with the axis, mainly in the direction of flight, in the expanded range of speeds, from 50 m/s to high near-sonic speed of flight. The invention may be applied for horizontal flight and maneuvering in flight on vertical take-off aircrafts using rotation of main rotors from the vertical stand of rotor axes during the take-off to almost horizontal position of rotor axes in horizontal flight, thus both the rotation of rotors and the change of position of an aircraft together with its rotors may be applied, and it may be also used in the horizontal take-off aircrafts with almost horizontal position of axes during the horizontal flight, including the planes with airscrew propellers.
Abstract:
A manned/unmanned aerial vehicle adapted for vertical takeoff and landing using the same set of engines for takeoff and landing as well as for forward flight. An aerial vehicle which is adapted to takeoff with the wings in a vertical as opposed to horizontal flight attitude which takes off in this vertical attitude and then transitions to a horizontal flight path. An aerial vehicle which controls the attitude of the vehicle during takeoff and landing by alternating the thrust of engines, which are separated in at least two dimensions relative to the horizontal during takeoff, and which may also control regular flight in some aspects by the use of differential thrust of the engines. A tailless airplane which uses a control system that takes inputs for a traditional tailed airplane and translates those inputs to provide control utilizing non-traditional control methods.