Abstract:
An optical interference device 100 is disclosed herein. In a described embodiment, the optical interference device 100 comprises a phase shifter array 108 for receiving a collimated beam of light. The phase shifter array 108 includes an array of cells 128 for producing optical light channels from respective rays of the collimated beam of light, with at least some of the optical light channels having varying phase shifts. The optical interference device 100 further includes a focusing lens 110 having a focal distance and arranged to simultaneously produce, from the optical light channels, a focused beam of light in its focal plane and an image downstream the phase shifter array 108 for detection by an optical detector 116. The optical interference device 100 also includes an optical spatial filter 112 arranged at the focal distance of the focusing lens 110 and arranged to filter the focused beam of light to produce a spatially distributed interference light pattern in zeroth order for detection by the optical detector 116. A method for producing a spatially distributed interference light pattern is also disclosed.
Abstract:
A hyperspectral imaging system and a method are described herein for providing a hyperspectral image of an area of a remote object (104). In one aspect, the hyperspectral imaging system includes a fore optic (106) with optics for acquiring and projecting an image from a remote object, a scannable slit mechanism (108, 208) with a plurality of slits for receiving the projected image, where the projected image simultaneously illuminates two or more of the plurality of slits, a spectrometer (110) for receiving and dispersing images passing through the two or more simultaneously-illuminated slits, and a two-dimensional image sensor (112) for recording images received from the spectrometer, where the images received from different slits are recorded on different sets of detection elements of the two-dimensional image sensor.
Abstract:
Systems and methods for generating 3D representations of shape and color texture of a test surface are described. In one aspect, surface topography interferometers are equipped with a multi-element detector and an illumination system to produce a true-color image of the measured object surface. Color information can be presented as a true-color two-dimensional image or combined with topography information to form a three-dimensional representation of the shape and color texture of the object, effectively creating for a human observer the impression of looking at the actual part.
Abstract:
A hyperspectral imaging system (100b) and a method are disclosed herein for providing a hyperspectral image of an area of a remote object (e.g., scene of interest 104). In one aspect, the hyperspectral imaging system includes at least one optic (106), a rotatable disk (302) which has multiple straight slits (304) formed therein, a spectrometer (110), a two-dimensional image sensor (112), and a controller (114). In another aspect, the hyperspectral imaging system includes at least one optic, a rotatable disk (which has at least one spiral slit formed therein), a spectrometer, a two-dimensional image sensor, and a controller. In yet another aspect, the hyperspectral imaging system includes at least one optic, a rotatable drum (which has a plurality of slits formed on the outer surface thereof and a fold mirror located therein), a spectrometer, a two-dimensional image sensor, and a controller.
Abstract:
A Raman spectrometer including a laser excitation source, edge filters, and detection optics that direct light into a spectrograph. A spectrograph containing a dispersive element and optics that directs various wavelengths of light onto a segmented diffractive MEMS light modulator array. The MEMS array, depending on actuation state, directs light either to or away from a single detector. Control electronics drive the MEMS light modulator for either sequential wavelength measurement or multiplexed wavelength measurement (Hadamard for example).
Abstract:
A programmable, many-band spectral imager based on addressable spatial light modulators (ASLMs), such as micro-mirror-, micro-shutter- or liquid-crystal arrays, is described. Capable of collecting at once, without scanning, a complete two-dimensional spatial image with ASLM spectral processing applied simultaneously to the entire image, the invention employs optical assemblies wherein light from all image points is forced to impinge at the same angle onto the dispersing element, eliminating interplay between spatial position and wavelength. This is achieved, as examples, using telecentric optics to image light at the required constant angle, or with micro-optical array structures, such as micro-lens- or capillary arrays, that aim the light on a pixel-by-pixel basis. Light of a given wavelength then emerges from the disperser at the same angle for all image points, is collected at a unique location for simultaneous manipulation by the ASLM, then recombined with other wavelengths to form a final spectrally-processed image.
Abstract:
Die Erfindung betrifft ein Spektrometer (1) zur Untersuchung der Inhaltsstoffe eines Fluids (2), mit einem Gehäuse (3) mit darin angeordneter Lichtquelle (4) und einem darin angeordneten Detektor (5), wobei das Licht der Lichtquelle (4) mit einem vorgegebenen Spektralbereich (Δλ) durch ein Sendefenster (7) durch das zu untersuchende Fluid (2) und durch ein Empfangsfenster (8) zu dem Detektor (5) geführt wird, wobei die Lichtquelle (4) durch mehrere mit einer Steuerelektronik (11) verbundene Leuchtdioden (10) gebildet ist, welche Leuchtdioden (10) zur Aussendung von Licht unterschiedlicher Wellenlängenbereiche (Δλ i ) innerhalb des vorgegebenen Spektralbereichs (Δλ) ausgebildet sind. Zur Schaffung eines möglichst kostengünstigen und mit geringer Baugröße aufgebauten Spektrometers (1) ist vorgesehen, dass der Detektor (5) zum Empfang des Lichts im gesamten vorgegebenen Spektralbereich (Δλ) und die Steuerelektronik (11) zur sequentiellen Ansteuerung der Leuchtdioden (10) ausgebildet ist, und gegenüber den Leuchtdioden (10) ein mit der Steuerelektronik (11) verbundener Kompensationsdetektor (12) angeordnet ist.
Abstract:
This invention discloses an optical spectrometer and a method for enhancing signal intensity for optical spectroscopy. The spectrometer includes: a light source and sampling unit, adapted to emit light and project the light onto a sample; an optical signal pre-processing unit, adapted to receive the light from the sample and output phase-division multiplexed and spatially decoupled optical signals in multi-channels; an optical signal encoder, adapted to allow optical signals of one or more channels among the multi-channels to pass through and reject optical signals of the rest of the multi-channels according to an encoding pattern; and a detection unit, adapted to acquire optical signals from the one or more channels passing through the optical signal encoder. The apparatus and method provided in the present invention can operate effectively with a weak throughput and achieve better operational reliability.