Abstract:
Unmanned missile with strongly backswept wing unit, in particular delta wings, which is transported in a container and is launched from the container by means of an auxiliary drive after release of a lock, and which during cruise flight is drivable by a propeller engine, lateral force surfaces (25) being deployable for stabilization of the missile during cruise flight, from retraction spaces (26) in the region of the wing root of the delta wings, and further a friction clutch (64, 65) is provided at the missile which, without supply of energy from the outside, couples the standing propeller 6 with the drive motor (7) running in the container, after leaving the container.
Abstract:
An unmanned aircraft of the remotely piloted type that is characterized by its configuration and outline using rigid counter rotating propellers, positioned substantially at the height of its center of mass or slightly below to allow producing a sufficiently large control moment to use a tether line for landing the aircraft and to allow using two substantially spheroidal surfaces at the top and bottom respectively rather than a single one relatively larger and more detectable surface as when the propellers are at the top.
Abstract:
An unmanned aircraft includes a propulsion system having a diesel or kerosene internal combustion engine and a charger device for engine charging. The propulsion system can be a hybrid propulsion system or a parallel hybrid propulsion system.
Abstract:
An aircraft includes propellers at a center of the airframe; a first power source; a pitch adjuster to change pitch angles of the propellers; a plurality of attitude control propellers; a second power source lower in output than the first power source; and a control circuit to control attitude of the airframe. The control circuit includes a first yaw rotation generation control unit to control first yaw rotation generated by torques of the propellers with the pitch adjuster; and a second yaw rotation generation control unit to control a second yaw rotation generated by torques generated by a difference in rotation speed between the attitude control propellers. The control circuit is configured to control the first yaw rotation generation control unit and the second yaw rotation generation control unit in accordance with a magnitude of a command value of yaw rotation.
Abstract:
An unmanned aerial vehicle includes at least one rotor motor configured to drive at least one propeller to rotate; and a micro hybrid generator system configured to provide power to the at least one rotor motor. The micro hybrid generator system includes a rechargeable battery configured to provide power to the at least one rotor motor; a small engine configured to generate mechanical power; and a generator motor coupled to the small engine and configured to generate electrical power from the mechanical power generated by the small engine. The unmanned aerial vehicle also includes a cooling system configured to couple to the micro hybrid generator system. The cooling system includes one or more plates; and a plurality of fins extending from each of the one or more plates. The cooling system is configured to dissipate heat from the micro hybrid generator system.
Abstract:
Systems, methods, and devices provide a vehicle, such as an aircraft, with rotors configured to function as a tri-copter for vertical takeoff and landing (“VTOL”) and a fixed-wing vehicle for forward flight. One rotor may be mounted at a front of the vehicle fuselage on a hinged structure controlled by an actuator to tilt from horizontal to vertical positions. Two additional rotors may be mounted on the horizontal surface of the vehicle tail structure with rotor axes oriented vertically to the fuselage. For forward flight of the vehicle, the front rotor may be rotated down such that the front rotor axis may be oriented horizontally along the fuselage and the front rotor may act as a propeller. For vertical flight, the front rotor may be rotated up such that the front rotor axis may be oriented vertically to the fuselage, while the tail rotors may be activated.
Abstract:
A multi-rotor flying machine includes a body on or in which a motor is mounted; and a respective head rotor mounted for rotation on a respective mast at each of at least three locations disposed around and spaced laterally outwardly from the motor. The motor is drivingly connected to each mast, for rotating each head rotor, by a respective driveline. Adjacent to at least one mast, the machine further includes a pitch rudder system that includes a pitch driver or rotor, or translational rotor. The arrangement is such that the head rotors are operable to provide thrust, while the pitch rudder system enables yaw to be achieved independently of operation of the head rotors.
Abstract:
This disclosure describes systems, methods, and apparatus for automating the verification of aerial vehicle sensors as part of a pre-flight, flight departure, in-transit flight, and/or delivery destination calibration verification process. At different stages, aerial vehicle sensors may obtain sensor measurements about objects within an environment, the obtained measurements may be processed to determine information about the object, as presented in the measurements, and the processed information may be compared with the actual information about the object to determine a variation or difference between the information. If the variation is within a tolerance range, the sensor may be auto adjusted and operation of the aerial vehicle may continue. If the variation exceeds a correction range, flight of the aerial vehicle may be aborted and the aerial vehicle routed for a full sensor calibration.
Abstract:
A system includes a torque sensor; and a hybrid power system. The hybrid power sensor includes a frame; an engine mounted on the frame; and a generator, the generator including: a generator rotor mechanically coupled to a shaft of the engine; and a generator stator coupled to the frame by the torque sensor. The torque sensor is configured to measure a torque on the generator stator.
Abstract:
Disclosed is an aerodyne including a supporting structure, to which are connected: at least one supporting axial blower, attached to the supporting structure; at least one main engine driving the supporting blower; at least three attitude blowers controlling roll and pitch, each attitude blower having an electrical motor and being attached, respectively, to one of the elongate arms that are distributed in a laterally, outwardly projecting manner around the supporting structure, to which each arm is connected by an inner end portion, the axis of rotation of each attitude blower being attached relative to the supporting structure, and all the attitude blowers being located outside the space centrally occupied by the supporting blower; at least one battery for supplying power to the electrical motors of the attitude blowers; a landing gear attached under the supporting structure; and a nacelle for holding the battery and a payload.