Abstract:
A method for processing an image of a microfluidic device. The method includes receiving a first image of a microfluidic device. The first image corresponds to a first state. Additionally, the method includes receiving a second image of the microfluidic device. The second image corresponds to a second state. Moreover, the method includes transforming the first image and the second image into a third coordinate space. Also, the method includes obtaining a third image based on at least information associated with the transformed first image and the transformed second image, and processing the third image to obtain information associated with the first state and the second state.
Abstract:
The present invention provides microfluidic devices comprising elastomeric components and solid substrate component for attaching ligands and methods for conducting a variety of assays and high throughput screening. The elastomeric components comprise a plurality of first and second flow channels forming a plurality of intersecting areas, further capable of forming looped flow channels, and in fluid communication with the solid substrate surface, a plurality of control channels, a plurality of first and second control valves, and a plurality of loop forming control valves.
Abstract:
The present invention provides microfluidic devices, systems and methods for using the same, which facilitate the introduction of fluid to and from a microfluidic channel located within the microfluidic devices.
Abstract:
The design of customized microfluidic systems using a CAD system (10) is disclosed. In one embodiment, a microfluidic circuit design method (200) is provided. The method includes developing synthesizable computer code for the design. Next, a microfluidic circuit schematic, including a plurality of symbols for microfluidic components, is generated either interactively or using the synthesizable computer code. The microfluidic circuit schematic is then functionally simulated. The microfluidic components are placed and routed (430) on a template to form a physical layout. Then the physical layout (410) is physically simulated (800) using dynamic simulation models of the microfluidic components; and the physical layout is written to a layout file (900).
Abstract:
In certain embodiments, the invention provides methods and devices for assaying single particles in a population of particles, wherein at least two parameters are measured for each particle. One or more parameters can be measured while the particles are in the separate reaction volumes. Alternatively or in addition, one or more parameters can be measured in a later analytic step, e.g., where reactions are carried out in the separate reaction volumes and the reaction products are recovered and analyzed. In particular embodiments, one or more parameter measurements are carried out "in parallel," i.e., essentially simultaneously in the separate reaction volumes.
Abstract:
Methods and reagents for detection and analysis of nucleic acids are provided. Certain methods involves an encoding amplification in which a target sequence is associated with probe-binding sequences and optionally with indexing sequences, (2) an optional distribution step in which the product of the encoding amplification is split into multiple aliquots, and (3) a decoding and detection step in which the presence, absence, quantity, or relative amount of the target sequence in the aliquots is determined. The detection step makes use of a multifunctional "self-digesting" molecular probe comprising a primer polynucleotide and a probe oligonucleotide, linked in a 5'-5' orientation.
Abstract:
The present invention provides methods for selectively enriching a biological sample for short nucleic acids, such as fetal DNA in a maternal sample or apoptic DNA in a biological sample from a cancer patient and for subsequently analyzing the short nucleic acids for genotype, mutation, and/or aneuploidy.
Abstract:
Methods are provided for selective tagging of short nucleic acids comprising a short target nucleotide sequence over longer nucleic acids comprising the same target nucleotide sequence. The methods can involve performing one or two cycles of amplification of a sample comprising long nucleic acids and short nucleic acids, each comprising the same target nucleotide sequence with at least two target-specific primers or primer pairs under suitable annealing conditions, wherein the primer pairs comprise: an inner primer or primer pair that can amplify the target nucleotide sequence on long and short nucleic acids (wherein each inner primer comprises a 5' nucleotide tag; and an outer primer or primer pair that amplifies the target nucleotide sequence on long nucleic acids, but not on short nucleic acids); whereby the amplification after a second cycle produces at least one tagged target nucleotide sequence that comprises two nucleotide tags, one from each inner primer, with the target nucleotide sequence located between the nucleotide tags.
Abstract:
A method of adjusting amplification curves in a PCR experiment includes receiving a plurality of amplification curves for a sample and computing a first parameter for each of the plurality of amplification curves. The method also includes computing a second parameter for each of the plurality of amplification curves and computing a third parameter using at least a portion of the first or second parameters. The method further includes computing an offset for each of the plurality of amplification curves. The offset is a function of the first parameter and the third parameter. Moreover, the method includes adjusting at least one of the plurality of amplification curves by subtracting the offset.