Abstract:
The present invention provides amplification-based methods for detection of genotype, mutations, and/or aneuploidy. These methods have broad applicability, but are particularly well-suited to detecting and quantifying target nucleic acids in free fetal DNA present in a maternal bodily fluid sample.
Abstract:
A method for rendering a microfluidic device suitable for reuse for nucleic acid analysis is provided. The method may include flowing a nucleic acid inactivating solution into a microfluidic channel of the device by pumping; and then flowing a wash solution into the channel by pumping, thereby displacing the nucleic acid inactivating solution from the channel, whereby any residual nucleic acid from a prior use of the device is inactivated.
Abstract:
A microfluidic device includes a pressure source and a control line in fluid communication with the pressure source. The microfluidic device also includes a plurality of valves operated via the control line and an independent valve positioned adjacent the control line and between the pressure source and the plurality of valves.
Abstract:
A carrier for holding a microfluidic device includes a substrate with a plurality of wells, each well defining a volume of between 0.1 µl and 100 µl; a plurality of channels within the substrate wherein each well is in fluid communication with at least one of the plurality of channels; and a receiving portion for receiving a microfluidic device and placing the microfluidic device in fluid communication with the plurality of wells. The carrier has a polymeric composition and/or an array of structural features that enhance its performance and compatibility with existing instrumentation.
Abstract:
The invention relates to methods, reagents and devices for detection and characterization of nucleic acids, cells, and other biological samples. Assay method are provided in which a sample is partitioned into sub-samples, and analysis of the contents of the sub-samples carried out. The invention also provides microfluidic devices for conducting the assay. The invention also provides an analysis method using a universal primers and probes for amplification and detection.
Abstract:
A microfluidic device adapted to perform many simultaneous binding assays including but not limited to immunological experiments, such as ELISA assays, with minimal cross-talk between primary and secondary antibodies.
Abstract:
Devices and methods for performing the relative concentration of a target in a sample, the sample containing both target and non-target components, the method performed by partitioning the sample into a large number of reaction volumes such that the target is concentrated relative to the non-target, and performing a detection assay upon each reaction volume to detect the target.
Abstract:
Embodiments of the present invention relate to replacement of the previous ICP-based ionisation system with a new laser ionisation system, providing improved mass spectrometer-based apparatus and methods for using them to analyse samples, in particular the use of mass spectrometry mass cytometry, imaging mass spectrometry and imaging mass cytometry, for the analysis of biological samples. Accordingly, embodiments of the present invention provide an apparatus, for example a mass cytometer, comprising: 1 ) a sampler; 2) a laser ionisation system to receive material removed from the sample by the sampler, wherein the laser ionisation system comprises an ionisation system conduit and a pulsed laser adapted to ionise sample material passing through or exiting the ionisation system conduit; and 3) a mass spectrometer to receive elemental ions from said ionisation system and to analyse said elemental ions.
Abstract:
The present invention relates to the high resolution imaging of samples using imaging mass spectrometry (IMS) and to the imaging of biological samples by imaging mass cytometry (IMCTM) in which labelling atoms are detected by IMS. LA-ICP-MS (a form of IMS in which the sample is ablated by a laser, the ablated material is then ionised in an inductively coupled plasma before the ions are detected by mass spectrometry) has been used for analysis of various substances, such as mineral analysis of geological samples, analysis of archaeological samples, and imaging of biological substances. However, traditional LA-ICP-MS systems and methods may not provide high resolution. Described herein are methods and systems for high resolution IMS and IMC.