Abstract:
The disclosure provides, in part a seal system for sealing a film. The disclosure further provides, in part, a sealed film comprising a first and a second substrate; a first and a second electrode disposed on the surface of at least one of the substrates; a switching material disposed between the first and second substrates; a first seal and a second seal; the first seal disposed along an edge of the switching material, separating the switching material from the second seal.
Abstract:
An apparatus comprising a switchable optical filter comprising a layer of switchable material, the switchable material comprising a photochromic/thermochromic, a photochromic/photochromic, or a photochromic/electrochromic compound; a first light source providing light of a wavelength that causes the switchable material to transition from a faded state to a dark state, or a dark state to a faded state; and a switch for controlling activation of the first light source
Abstract:
Methods, systems, and techniques for controlling a variable transmittance optical filter involve determining at least one of a temperature of, color of, and current flowing through the optical filter, and adjusting the voltage applied across the filter in response to at least one of the temperature, color, and current. The transmittance of the optical filter decreases until reaching a minimum on exposure to a first stimulus and increases until reaching a maximum in response to application of a second stimulus, and at least one of the first and second stimuli involves applying a voltage across the filter.
Abstract:
A variable transmittance vehicle window may adjust its transmittance in response to readings from an interior light sensor that is positioned to measure intensity of at least one wavelength of light that is a proper subset of the visible spectrum and that has entered the interior of a vehicle comprising the window after passing through the window. If the intensity of light inside the vehicle is too high, the window is darkened; analogously, if the intensity of light inside the vehicle is too low, the window is lightened. Additionally or alternatively, the window may be transitioned to and maintained at an intermediate transmittance that is between the window's maximum and minimum transmittances.
Abstract:
A compound according to Formula IA and IB, reversibly convertible under photochromic and electrochromic conditions between a ring-open isomer A and a ring-closed isomer B is provided. For substitutent groups, Z is N, O or S; each R 1 is independently selected from the group consisting of H, or halo; each R 2 is independently selected from the group consisting of H, halo, a polymer backbone, alkyl or aryl; or, when both R 2 together form -CH=CH- and form part of a polymer backbone; each R3 is independently selected from the group consisting of H, halo, alkyl, alkoxy, thioalkyl or aryl; each R 4 is aryl; and each R 5 is independently selected from the group consisting of H, halo, alkyl, alkoxy, thioalkyl or aryl.
Abstract:
A self-powered variable transmittance optical device, such as a smart window or other device, and associated method are provided. The device comprises one or more transparent substrates, with a switching material disposed thereon or therebetween. The switching material may be a hybrid photochromic/electrochromic material capable of transitioning from a first transmittance state to a second transmittance state with application of electricity, and from second state to first state due to another stimulus, such as UV radiation. Electrodes are coupled to the switching material for applying electricity. An electrical system provides for controllable application of the electricity, and may store energy. Energy is provided by an energy-harvesting power source such as a solar cell or other photovoltaic source, or array thereof, or another device for harvesting vibrational or thermal energy. Energy harvesting, energy storage capacity and/or switching material may be configured to provide at least a predetermined level of device operability.
Abstract:
Provided is a switchable article, comprising: a transparent plastic layer; a switchable film; and optionally a heat-attenuating layer. The switchable film comprises a switching material disposed between a first and a second substantially transparent substrates, each substrate having disposed thereon a transparent conductive layer, the transparent conductive layers each in contact with the switching material. The switching material comprising one or more compounds may have electrochromic and photochromic properties. Further provided is a method of preparing a switchable glazing, comprising the steps of providing a switchable film; optionally disposing a heat attenuating layer on a side of the switchable film; and molding a transparent plastic layer in contact with the heat attenuating layer
Abstract:
A compound according to Formula IA and IB, reversibly convertible under photochromic and electrochromic conditions between a ring-open isomer A and a ring-closed isomer B is provided. For substitutent groups, Z is N, O or S; each R1 is independently selected from the group consisting of H, or halo; each R2 is independently selected from the group consisting of H, halo, a polymer backbone, alkyl or aryl; or, when both R2 together form -CH=CH- and form part of a polymer backbone; each R3 is independently selected from the group consisting of H, halo, alkyl, alkoxy, thioalkyl or aryl; each R4 is aryl; and each R5 is independently selected from the group consisting of H, halo, alkyl, alkoxy, thioalkyl or aryl.
Abstract:
Variable transmittance optical filters capable of transitioning from a light state to a dark state on exposure to UV radiation and from a dark state to a light state with application of an electric voltage are provided. The optical filters comprise a switching material that comprises one or more chromophores that have electrochromic and photochromic properties.
Abstract:
A switching material comprising one or more than one polymers and an electrolyte comprising a salt and a solvent portion comprising one or more solvents; and one or more compounds having electrochromic and photochromic properties dispersed homogeneously through the switching material; and wherein the switching material is transitionable from a light state to a dark state on exposure to UV light and from a dark state to a light state with application of an electric voltage.