Abstract:
The disclosure provides, in part a seal system for sealing a film. The disclosure further provides, in part, a sealed film comprising a first and a second substrate; a first and a second electrode disposed on the surface of at least one of the substrates; a switching material disposed between the first and second substrates; a first seal and a second seal; the first seal disposed along an edge of the switching material, separating the switching material from the second seal.
Abstract:
A self-powered variable transmittance optical device, such as a smart window or other device, and associated method are provided. The device comprises one or more transparent substrates, with a switching material disposed thereon or therebetween. The switching material may be a hybrid photochromic/electrochromic material capable of transitioning from a first transmittance state to a second transmittance state with application of electricity, and from second state to first state due to another stimulus, such as UV radiation. Electrodes are coupled to the switching material for applying electricity. An electrical system provides for controllable application of the electricity, and may store energy. Energy is provided by an energy-harvesting power source such as a solar cell or other photovoltaic source, or array thereof, or another device for harvesting vibrational or thermal energy. Energy harvesting, energy storage capacity and/or switching material may be configured to provide at least a predetermined level of device operability.
Abstract:
Variable transmittance optical filters capable of transitioning from a light state to a dark state on exposure to UV radiation and from a dark state to a light state with application of an electric voltage are provided. The optical filters comprise a switching material that comprises one or more chromophores that have electrochromic and photochromic properties.
Abstract:
The disclosure provides, in part a seal system for sealing a film. The disclosure further provides, in part, a sealed film comprising a first and a second substrate; a first and a second electrode disposed on the surface of at least one of the substrates; a switching material disposed between the first and second substrates; a first seal and a second seal; the first seal disposed along an edge of the switching material, separating the switching material from the second seal.
Abstract:
A self-powered variable transmittance optical device, such as a smart window or other device, and associated method are provided. The device comprises one or more transparent substrates, with a switching material disposed thereon or therebetween. The switching material may be a hybrid photochromic/electrochromic material capable of transitioning from a first transmittance state to a second transmittance state with application of electricity, and from second state to first state due to another stimulus, such as UV radiation. Electrodes are coupled to the switching material for applying electricity. An electrical system provides for controllable application of the electricity, and may store energy. Energy is provided by an energy-harvesting power source such as a solar cell or other photovoltaic source, or array thereof, or another device for harvesting vibrational or thermal energy. Energy harvesting, energy storage capacity and/or switching material may be configured to provide at least a predetermined level of device operability.
Abstract:
A control system (10) for a variable transmittance optical filter assembly (46) includes a controller (48) in communicatively coupled to a pair of load terminals (45), and a memory (49) communicatively coupled to the controller (48) and having encoded thereon statements and instructions executable by the controller (48) to transition the optical filter assembly (46) between operating states when coupled to the pair of load terminals (45). The controller is operable to maintain the optical filter assembly (46) at a certain transmittance value between lower an upper transmittance thresholds in a hold mode by applying a pulse width modulated voltage signal (30) across the load terminals (45).
Abstract:
A variable transmittance optical filter comprising: a first layer comprising a first substantially transparent substrate with a substantially co-planar (SC) electrode system disposed thereon, the SC electrode system made of transparent electrically conductive material and comprising at least one pair of electrically separate electrodes arranged in a substantially co-planar manner on the first substantially transparent substrate, each pair of electrically separate electrodes comprising a first electrode and a second electrode, a second layer proximate to the first layer and comprising a transition material that darkens in response to a non-electrical stimulus and lightens in response to application of an electric voltage; and an electrical connection system for electrically connecting the SC electrode system to a source of electric voltage.
Abstract:
An optical filter comprising a variable transmittance layer having a first spectrum in a dark state, and a second spectrum in a faded state; and a color balancing layer having a third spectrum; each of the first, second and third spectra comprising a visible portion; the first and third spectra combining to provide a dark state spectrum approximating a dark state target color, and the second and third spectra combining to provide a faded state spectrum approximating a faded state target color. The optical filter may further comprise a light attenuating layer. The optical filter may further comprise part of a laminated glass.
Abstract:
Variable transmittance optical filters capable of transitioning from a light state to a dark state on exposure to UV radiation and from a dark state to a light state with application of an electric voltage are provided. The optical filters comprise a switching material that comprises one or more chromophores that have electrochromic and photochromic properties.