Abstract:
A switching material comprising one or more than one polymers and an electrolyte comprising a salt and a solvent portion comprising one or more solvents; and one or more compounds having electrochromic and photochromic properties dispersed homogeneously through the switching material; and wherein the switching material is transitionable from a light state to a dark state on exposure to UV light and from a dark state to a light state with application of an electric voltage.
Abstract:
A switching material comprising one or more than one polymers and an electrolyte comprising a salt and a solvent portion comprising one or more solvents; and one or more compounds having electrochromic and photochromic properties dispersed homogeneously through the switching material; and wherein the switching material is transitionable from a light state to a dark state on exposure to UV light and from a dark state to a light state with application of an electric voltage.
Abstract:
A switching material comprising one or more than one polymers and an electrolyte comprising a salt and a solvent portion comprising one or more solvents; and one or more compounds having electrochromic and photochromic properties dispersed homogeneously through the switching material; and wherein the switching material is transitionable from a light state to a dark state on exposure to UV light and from a dark state to a light state with application of an electric voltage.
Abstract:
A control system (10) for a variable transmittance optical filter assembly (46) includes a controller (48) in communicatively coupled to a pair of load terminals (45), and a memory (49) communicatively coupled to the controller (48) and having encoded thereon statements and instructions executable by the controller (48) to transition the optical filter assembly (46) between operating states when coupled to the pair of load terminals (45). The controller is operable to maintain the optical filter assembly (46) at a certain transmittance value between lower an upper transmittance thresholds in a hold mode by applying a pulse width modulated voltage signal (30) across the load terminals (45).