Abstract:
An integrated device including a photodetector, a transparent substrate, and one or more spacers. The photodetector is formed in a portion of a wafer. The one or more spacers separate the photodetector and the transparent substrate.
Abstract:
A system for machine vision spectral imaging includes a spectral imager, a substrate, and a processor. The spectral imager comprises a Fabry-Perot etalon including a settable gap. The substrate has relative motion with respect to the spectral imager. The processor is configured to identify an object in a set of images from the spectral imager, wherein each of the set of images is associated with a specific gap of a full set of gaps, wherein the full set of gaps comprises a set of gaps setting the settable gap covering a complete range of the settable gap needed for a full spectral image of the object.
Abstract:
This disclosure enables high-productivity controlled fabrication of uniform porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
Abstract:
A label has a portion that is readable by a human being and a portion that is readable by a machine. The label includes information stored using a spectral content of reflected from a tag. The label is used for authentication.
Abstract:
A system for spectral reading includes a plurality of LEDs, an interface, and a processor. The plurality of LEDs are disposed in a physical array. Light from the plurality of LEDs is enabled to be collimated at a Fabry-Perot etalon. The interface is configured to receive a gap calibration table and power characteristics of a plurality of LEDs. The processor is configured to determine an LED switch table. The LED switch table indicates a set of the plurality of LEDs with power above a threshold at a plurality of wavelengths. The processor is further configured to cause measurement of a sample using the gap calibration table and the LED switch table for a set of gap values and determine measurement results.
Abstract:
A device for tunable optical filter includes a substrate, one or more piezos, a bottom mirror, and a top mirror. The one or more piezos are placed on the substrate. The one or more piezos have a piezo thickness. The bottom mirror is placed on the substrate. The bottom mirror has a bottom mirror thickness greater than the piezo thickness. The top mirror is placed on the bottom mirror. The top mirror is attached to the one or more piezos.
Abstract:
A system verifying an item in a package comprises a package producer and a verifier. The package producer produces a package with a label, wherein the package includes an item each with one or more selected tag identifiers that are placed in a location on the item. The verifier verifies the item using 1) the one or more selected tag identifiers as detected using a spectral measurement or 2) a location or a shape of the one or more selected tag identifiers on the item, and 3) the label as read using a label reader.
Abstract:
A system for decoding energy peaks of an identifier includes an interface and a processor. The interface is configured to receive a reference peak position associated with an identifier, wherein the identifier comprises a rugate microtag, and receive a set of data pattern peak positions associated with the identifier. The processor is configured to determine a set of adjusted data pattern peak positions based on the reference peak position.
Abstract:
A system for verifying an item in a package using a database comprises a database and a verifier. A package producer provides the database with an identifier for one or more items each of a type, wherein the package producer produces a package, where the package includes the one or more items each of the type with an associated one or more selected tag identifiers that are placed in a location on an item of the one or more items. The verifier verifies the one or more items of the type using 1) the associated one or more selected tag identifiers as detected using a spectral measurement or 2) a tag characteristic as detected using an imager, and 3) the identifier retrieved from the database.
Abstract:
A system for typing biological cells includes a tunable Fabry-Perot etalon, and imaging sensor, and a processor. The imaging sensor acquires one or more images of one or more biological cells from light transmitted through the tunable Fabry-Perot etalon. Each image represents signal associated with one or more wavelengths transmitted through the tunable Fabry-Perot etalon. The processor is configured to determine a type of each of the one or more biological cells. Determining the type uses a machine learning algorithm and is based at least in part on one or more of an image segmentation, a patch extraction, a feature extraction, a feature compression, a deep feature extraction, a feature fusion, a feature classification, and a prediction map reconstruction.