Abstract:
PURPOSE: A multi-layered polymer electrolyte and a lithium secondary battery containing the electrolyte are provided, to improve the adhesive strength, the mechanical properties, the low and high temperature characteristics, the high rate discharge capacity, the lifetime, the capacity and the stability of a battery. CONSTITUTION: The electrolyte comprises a separation membrane layer, a gel polymer electrolyte layer, and an organic electrolyte solution which is prepared by dissolving a lithium salt into an organic solvent. The separation membrane layer is made of a polymer electrolyte, polypropylene, polyethylene, polyvinylidene fluoride or non-woven; the gel polymer electrolyte layer comprises 5-90 wt% of a polyacrylonitrile-based polymer, 5-80 wt% of a polyvinylidene fluoride-based polymer or a poly(methyl methacrylate)-based polymer, and 5-80 wt% of a poly(vinyl chloride)-based polymer or a polyvinylidene fluoride-based polymer, and is coated to the one or both sides of the separation membrane. Preferably the lithium salt is selected from the group consisting of LiPF6, LiClO4, LiAsF6, LiBF4, LiCF3SO3, Li(CF3SO2)2N and their mixtures; and the organic solvent is selected from the group consisting of ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate and their mixtures.
Abstract translation:目的:提供一种多层聚合物电解质和含有电解质的锂二次电池,以提高粘合强度,机械性能,低温和高温特性,高放电容量,寿命,容量和稳定性 的电池。 构成:电解质包含分离膜层,凝胶聚合物电解质层和通过将锂盐溶解在有机溶剂中而制备的有机电解质溶液。 分离膜层由聚合物电解质,聚丙烯,聚乙烯,聚偏二氟乙烯或无纺布制成; 凝胶聚合物电解质层包含5-90重量%的基于聚丙烯腈的聚合物,5-80重量%的聚偏二氟乙烯基聚合物或聚(甲基丙烯酸甲酯)基聚合物,以及5-80重量%的聚 (氯乙烯)类聚合物或聚偏二氟乙烯类聚合物,并且被涂覆在分离膜的一侧或两侧。 优选锂盐选自LiPF 6,LiClO 4,LiAsF 6,LiBF 4,LiCF 3 SO 3,Li(CF 3 SO 2)2 N及其混合物; 有机溶剂选自碳酸亚乙酯,碳酸亚丙酯,碳酸二乙酯,碳酸二甲酯,碳酸甲乙酯及其混合物。
Abstract:
PURPOSE: A lithium electrode combined with a separator membrane in a body and a primary or secondary lithium battery employing the electrode are provided, to improve the capacity of a battery, the charging/discharging efficiency and the lifetime. CONSTITUTION: The lithium electrode is combined with a separator membrane in a body, which one side of the separator membrane is coated with lithium and metals in multilayered structure or composite structure by several to several tens micrometers. The metal is selected from the group consisting of Li, Al, Sn, Bi, Si, Sb, Ni, Cu, Ti, V, Cr, Mn, Co, Zn, Mo, W, Ag, Au, Ru, Pt and their alloys. The separator membrane comprises the material selected from the group consisting of PP, PE, PVdF and nonwoven. The secondary lithium battery comprises the lithium electrode, and a positive electrode active material selected from the group consisting of LiCoO2, LiNiO2, LiNiCoO2, LiMn2O4, V2O5 and V6O13. The primary lithium battery comprises the lithium electrode, and a positive electrode active material selected from the group consisting of MnO2, (CF)n and SOCl2.
Abstract translation:目的:提供一种与体内隔离膜结合的锂电极和使用电极的一次或二次锂电池,以提高电池的容量,充放电效率和使用寿命。 构成:将锂电极与主体中的隔膜结合,隔膜的一侧用多层结构或复合结构的锂和金属涂覆数几十微米。 金属选自Li,Al,Sn,Bi,Si,Sb,Ni,Cu,Ti,V,Cr,Mn,Co,Zn,Mo,W,Ag,Au,Ru,Pt及其 合金。 分离膜包括选自PP,PE,PVdF和非织造材料的材料。 二次锂电池包括锂电极和选自LiCoO 2,LiNiO 2,LiNiCoO 2,LiMn 2 O 4,V 2 O 5和V 6 O 13的正极活性物质。 一次锂电池包括锂电极和选自MnO 2,(CF)n和SOCl 2的正极活性物质。
Abstract:
PURPOSE: A lithium-metal composite electrode, its preparation method and a lithium battery using the electrode are provided, to improve the conductivity of an electrode and to maintain the potential distribution of the surface of an electrode, thereby enhancing the utilization rate, the cycle lifetime and the charge/discharge efficiency of a battery. CONSTITUTION: The lithium-metal composite electrode comprises the mixture of lithium particle or lithium alloy particle and a metal. The metal is selected from the group consisting of Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Ru, Pt, Ir, Al, Sn, Bi, Si, Sb and their alloys. The lithium alloy is an alloy of the metal selected from the group consisting of Al, Sn, Bi, Si, Sb, B and their alloys, and lithium. The method comprises the steps of evaporation-depositing the lithium or lithium alloy and the metal on the current collector simultaneously by using the thin film making technique; and compressing the deposited one with a pressure of 10-100 kg/cm¬2.
Abstract:
본발명은 5∼90중량%의 PMMA계 화합물 및 PAN계 화합물, PVC계 화합물 및 PVdF계 화합물로 이루어진 그룹으로부터 선택된 하나이상의 화합물을 각각 80중량%이하로 혼합하여 이루어지는 PMMA계/PAN계/PVC계/PVdF계 혼합물에, 가소제 및 유기용매를 혼합하고 이를 캐스팅하여 건조함으로써 고체고분자 막을 얻은 후, 리튬염이 용해된 유기용매전해질을 주입하는 것으로 이루어지는 것을 특징으로 하는 다성분계 고체고분자 전해질의 제조방법에 관한 것으로, 본발명에 의한 고체고분자 전해질들은 이온전도도가 리튬 고분자 전지용 전해질로서 충분히 사용할 수 있을 정도로 우수하고 접착력 및 기계적 강도도 우수하여 전지제조가 용이할 뿐만 아니라 이를 이용한 전지는 전극용량 및 싸이클 수명 특성과 같은 전지성능도 우수하게 나타나 리튬고분자 전지용 고체� ��분자 전해질로서 매우 적합한 것으로 나타났다.
Abstract:
PURPOSE: A solid polymer electrolyte and method for producing lithium polymer battery are provided for enhancing adhesiveness and mechanical stability of laminate formed by the solid electrolyte without alteration of ionic conductivity by blending PAN and PVdF polymers. CONSTITUTION: The solid polymer electrolyte is produced by mixing PAN and PVdF polymers as the starting materials in a weight ratio of 10:1-1:5, blending it with the organic solvent, SiO2 and the plasticizer; heating the resultant mixture to form solid polymer electrolyte matrix; casting the matrix. The amount of organic solvent added is 1-5 times the amount of the starting materials. The amount of SiO2 is 1-20 wt.% based on the weight of the starting materials. The heating process is carried out at 110-180 deg.C. for 10 minutes to 2 hours. The lithium polymer battery is produced by mixing the solid polymer electrolyte together with the plasticizer to prepare the combined anode and cathode and laminating the electrolyte to form the final product.
Abstract:
PURPOSE: A manufacturing method for a ternary system solid high molecule electrolyte is provided to easily manufacture a battery by using good adhesive strength and mechanical strength and to improve an electrode capacity and cycle life span characteristic. CONSTITUTION: A ternary system solid high molecule electrolyte is manufactured by; performing a high molecule blending after mixing a plasticizer and an organic solvent to a Poly Acrylonitrile(PAN) system/a Poly Vinyl Chloride(PVC) system/a Poly Vinylidene Fluoride(PVdF) system compound consist of 10¯90 wt% of PAN system compound, 1¯50 wt% of PVC system compound, and 1¯50 wt% of PVdF system compound; forming a matrix of the solid high molecule electrolyte; casting and drying for obtaining a solid high molecule film; and injecting a lithium chloride dissolved organic solvent electrolyte.
Abstract:
본 발명은 카본 전극의 전리튬화 방법과 이를 이용한 리튬 이차전지 제조방법에 관한 것으로, 종래의 리튬 이차전지는 음극으로 사용된 카본 전극이 피막형성 반응의 비가역적 반응으로 리튬 이온의 소모를 가져와 전지의 용량을 감소시키는 역효과와 싸이클 수명이 저하하게 되는 문제점이 있는 바, 본 발명은 카본 전극과 리튬 금속을 저항으로 연결하거나 직접 접촉시킨 상태에서 온도와 전해질의 이온전도도를 변화시켜서 카본 전극이 리튬화 되는 속도와 양을 조절하고, 리튬화 후에 일정 온도와 시간 동안 안정화 시킴으로써 카본 전극 표면상에 안정한 피막을 형성하여 카본 전극의 가역성을 향상시키고, 리튬화된 카본 전극으로 리튬 이차전지를 제조하여, 카본 전극에서의 비가역용량에 의한 용량저하를 방지함으로써 용량증가와 충방전시 충� �전 효율 문제로 인하여 소모되는 리튬의 양을 보충해줌으로써 싸이클 수명을 향상시키도록 한 것이다.
Abstract:
본 발명은 마그네슘 이차전지용 양극 집전체 및 이의 제조 방법에 관한 것이다. 본 발명의 여러 구현예에 따르면, 구리 포일의 양면에 니켈 도금층 또는 니켈 합금 도금층을 포함하고, 상기 도금층 표면에 돌기 구조를 포함하는 마그네슘 이차전지용 양극 집전체는 전해질 용액 상에서 화학적으로 매우 안정하고, 전극 활물질과의 결착력을 증가시킬 수 있으므로 본 발명의 구현예에 따른 양극 집전체를 마그네슘 이차전지의 양극에 이용하는 경우, 전기 전도도가 증대되고 방전 용량이 증가하며 사이클 수명을 증가시키는 효과가 매우 우수하다.
Abstract:
본 발명의 여러 구현예에 따르면, 마그네슘 이차전지용 음극 포일은 마그네슘 이차전지용 전해질 용액에서의 화학적, 전기화학적 안정성과 전기전도도가 우수하고, 두께가 얇아 전지의 무게당 및 부피당 에너지밀도가 높고 가격이 저렴하므로, 마그네슘 이차전지용 음극으로 사용하는 경우, 마그네슘 이차전지의 전기화학적 안정성, 전극용량 및 사이클 특성을 향상시키는 효과가 있으므로 향후 마그네슘 이차전지의 상용화에 기여할 수 있을 것으로 기대된다.
Abstract:
The present invention relates to a recycling method of an electrode active material of a metal oxide for a lithium secondary battery. The method comprises: a first step for preparing electrode scrap containing an electrode active material of a metal oxide being generated in the process of manufacturing a lithium secondary battery; a second step for carbonizing a binder existing in the electrode scrap by thermally treating the electrode scrap in an atmosphere containing air or the mixed gas of air and nitrogen; and a third step for recovering the electrode active material of a metal oxide from the electrode scrap. According to the present invention, a user can minimize environmental pollution by using simple physical thermal treatment and a separation method and can recycle an electrode active material of a metal oxide contained in electrode scrap or a battery being generated in the process of manufacturing an electrode and a battery through a simple process with low costs. [Reference numerals] (S1) Preparing electrode scrap containing electrode active material of metal oxide;(S2) Heat-processing (300-700°C air atmosphere or air and nitrogen mixed gas atmosphere);(S3) Recovering electrode active material of metal oxide (grinding, sieving);(S4) Producing electrode for lithium secondary battery