Abstract:
본 발명은 CO 하에서 열처리된 PtAu 나노입자 촉매 및 이의 제조방법에 관한 것으로 Pt x Au y 나노입자 촉매를 일산화탄소(CO) 분위기 하에서 열처리함으로써, 높은 Pt 표면적 및 우수한 산소환원반응(ORR) 활성을 가지므로 연료전지에 적용하면 고효율 및 우수한 품질의 연료전지를 제공할 수 있다.
Abstract:
The present invention relates to a cardo-polybenzimidazole copolymer, a gas separation membrane and a manufacturing method thereof and, more particularly, to a gas separation membrane which is manufactured using a synthesized cardo-polybenzimidazole copolymer having a cardo group and an aromatic ether group introduced into a main chain of polybenzimidazole and has greatly improved oxygen permeability; and a manufacturing method thereof. The cardo-polybenzimidazole copolymer manufactured according to the present invention can provide a gas separation membrane which has improved solubility compared with existing polybenzimidazole copolymers, maintains thermal stability, has excellent mechanical properties to be able to be manufactured into a film shape, and has greatly improved gas permeability, specifically oxygen permeability.
Abstract:
The present invention relates to a method for synthesizing and preparing Pt-Ni alloy nanoparticles with a hollow structure, and to an electrode catalyst for a fuel cell prepared by the same to have enhanced performance. When the difference in the rate of reduction of metal precursors according to various embodiments of the present invention is employed, it is possible to synthesize a single container and a single process by putting a reducing agent in two or more metal precursors and a carbon carrier which are in a state of being stirred together, and also to synthesize alloy nanoparticles with a binary or more hollow structure. In addition, it is possible to control the size of the nanoparticles of the present invention by controlling the content of a Ni precursor without a surfactant and a stabilizer which are required for controlling the size and shape of particles. Furthermore, the performance of an oxygen reduction reaction and the durability of a catalyst are improved by the unique characteristics of the Pt-Ni alloy nanoparticles with a hollow structure.
Abstract:
PURPOSE: A self humidifying method of a fuel cell device is provided to easily humidify a room without a humidifier; reduce the size of the fuel cell system without a separate cell for humidification; increase a fuel power density. CONSTITUTION: A self humidifying method of a fuel cell device in which more than one alkali anion exchange membrane fuel cell or a stack and more than one polymer electrolyte membrane fuel cell or the stack are arranged by turns comprises the following: a step of supplying hydrogen gas to the alkali anion exchange membrane fuel cell or the stack; a step of supplying the hydrogen gas which is emitted from the alkali anion exchange membrane fuel cell or the stack, and which is humidified with the water which is generated in the alkali anion exchange membrane fuel cell or the stack to the polymer electrolyte membrane fuel cell or the stack.
Abstract:
PURPOSE: A hydrogen pump system is provided to separate or purify hydrogen by an independent operation without external power source. CONSTITUTION: A hydrogen pump system includes m hydrogen pumps and n fuel cells. A first hydrogen pump includes a first electrode-membrane assembly; a first hydrogen supply unit located in one side of the first hydrogen pump electrode-membrane assembly; a first residual gas exhaust unit; and a hydrogen exhaust unit located in the opposite side of the electrode-membrane assembly. Other hydrogen pumps are similar to the first hydrogen pump. [Reference numerals] (AA) Mixed gas; (BB) Concentration; (CC) Hydrogen pump; (DD) Air
Abstract:
본 명세서에는 안정하면서도 성능이 우수한 고분자 전해질의 재료인 신규한 폴리벤즈이미다졸리움이 제공되며, 상기 폴리벤즈이미다졸리움을 이용하면 불안정한 음이온 교환기의 단점을 보완함으로써, 높은 안정성과 고성능을 갖는 고분자 전해질 막 또는 촉매 바인더를 제공할 수 있는 효과가 있다.
Abstract:
PURPOSE: A carbon monoxide poisoning relieving method of a fuel cell is provided to be able to easily relieve the carbon monoxide poisoning phenomenon of a cathode catalyst generated when a high temperature polymer electrolyte membrane fuel cell uses hydrocarbon gas as fuel. CONSTITUTION: A carbon monoxide poisoning relieving method of a polymer electrolyte membrane fuel cell comprises a step of supplying steam to the cathode of a polymer electrolyte membrane fuel cell. The working temperature of the polymer electrolyte membrane fuel cell is 120-200deg.C. At the working temperature of the polymer electrolyte membrane fuel cell, steam is provided to the cathode of the polymer electrolyte membrane fuel cell. A modified gas supply apparatus supplying modified gas to the polymer electrolyte membrane fuel cell supplies modified gas to the cathode of the polymer electrolyte membrane fuel cell with maintaining steam in the modified gas or adding steam.
Abstract:
PURPOSE: A method for stabilizing structure of a membrane electrode assembly is provided to improve interface stability between an electrolyte membrane and a catalyst layer, by modifying edge parts of a polymer electrolyte membrane, which are not coated with a catalyst. CONSTITUTION: In a method for stabilizing structure of a membrane electrode assembly, the fuel cell membrane electrode assembly comprises a polymer electrolyte membrane, and a catalyst layer coated on the polymer electrolyte membrane. The method comprises a step of heat-treatment of the part of the polymer electrolyte membrane which includes one or more of an edge region of a polymer electrolyte membrane, a gas inlet region, and an outlet region(20). By the heat-treatment, the interface of the electrolyte membrane and catalyst layer is stabilized.