Abstract:
본 발명은 물질의 농도를 감지하는 표면 개질형 나노선 센서 및 그 제작 방법에 관한 것으로서, 평면 기판의 일면에 트렌치 구조를 갖는 센서 구조체를 형성하고, 상기 센서 구조체의 감지전극 상부에 나노선 감지소재를 위치시키고, 상기 센서 구조체에 형성된 트렌치 골에 화학 반응물이 녹아있는 표면 개질 용액을 흘려보내 상기 나노선 감지 소재의 표면을 개질시켜 상기 표면 개질형 나노선 센서를 제작하고, 표면이 개질된 상기 나노선 감지소재는 상기 감지 전극에 접하고, 상기 감지 전극 사이의 트렌치 골의 공중에 부양되며, 특정 물질과 선택적으로 상호 작용하여 전기전도도가 변화됨을 특징으로 하며, 기판 표면의 간섭 작용을 배제할 수 있으며, 트렌치 골을 따라서 다양하고 위치 선택적인 표면 개질을 손쉽게 수행할 수 있다. 표면 개질형 나노선 센서, 트렌치형 센서구조체, 보호층, 감지전극, 나노선 감지소재.
Abstract:
본 발명은 심볼 오류정정이 가능한 주파수 선택적 기저대역을 사용하는 변복조 방법 및 그 장치에 관한 것으로, 주파수 확산에 사용되는 2 N (N은 실수)개의 전체 확산부호 또는 직교부호를 2 M (M M 개의 확산부호 중 하나의 확산부호가 선택되도록 함으로, 전체 P개의 확산부호를 획득하는 단계; 상기 채택된 P개의 서브그룹으로 입력되는 P*M개의 데이터 비트를 사용하여 심볼 오류정정을 위한 L*M개의 패리티 비트를 생성하는 단계; 상기 L*M개의 패리티 비트를 상기 L개의 서브그룹으로 입력하여, 상기 L개의 서브그룹에서 2 M 개의 확산부호 중 하나의 확산부호가 선택되도록 하는 단계; 상기 P+L개의 서브그룹으로부터 획득된 P+L개의 확산부호에서 다수값을 선택하여, 상기 다수값으로 이루어진 전송 데이터를 발생하는 단계를 포함하여 구성되며, 이에 의하여 전체 시스템의 프로세싱 이득 개선, 전송 데이터률 증가 및 더욱 안정된 디지털 통신을 저전력으로 구현할 수 있는 효과를 가진다. 주파수 선택적 기저대역, 다중 전송, 통신, 통신 모뎀, 심볼 오류정정
Abstract:
본 발명에 따른 인체 통신 시스템은 의사잡음 코드가 맨체스터 인코딩된 프리엠블을 포함하는 프레임을 상기 인체로 전송하는 송신부, 그리고 상기 인체로부터 상기 프레임을 수신하여 맨체스터 디코딩하고, 상기 디코딩 결과 및 상기 의사잡음 코드의 상호 상관을 수행하고, 그리고 상기 상호 상관 결과를 근거로 하여 프레임 동기를 수행하는 수신부를 포함한다. 본 발명에 따르면, 클럭 및 데이터 복원 동작 성능이 향상된다. 본 발명은 계산량을 줄인 효율적인 프레임 동기 방식을 제공한다.
Abstract:
A surface-modified nanowire sensor and a manufacturing method thereof are provided to flow a reforming solution along a trench valley in order to exclude the interference action of a substrate surface. A surface-modified nanowire sensor comprises: a planar substrate(110) whose some parts are etched to form a trench valley; a protective layer(120a) formed for electrical truncation on the surface of the planar substrate; a sensor structure consisting of a sensing electrode, formed on the protective layer of the planar substrate; and a nanowire sensing material which is in contact with the sensing electrode and formed above the trench valley and whose conductivity is changed when the nanowire sensing material is selectively interacted with a certain material.
Abstract:
A TDD(Time Division Duplex) mode communications device and an operation method for stabilizing clock without a crystal oscillator are provided to generate the operation clock of receiver and transmission unit by penuriously using a CDR circuit used for clock and reconstitution of data of the receive frame. An analog front end unit(21) receives a receive frame from outside and outputs transmission frame. An analog front end restores the clock and data of the received signal through CDR(Clock Recovery Data Retiming). A transmission unit(22) is operated by using the clock signal of the reference frequency generated in CDR for the transmission time interval. The transmission unit generates the transmission frame. A receiver(23) is operated by using the clock signal restored by CDR from the receive frame for the receive timing section. The receiver processes data restored in the analog front end.
Abstract:
A receiver and a receiving method for a human body communication system are provided to transmit data stably without the reduction of a transmission speed by reducing distortion of a channel and a noise of a signal. A human body communication transceiver includes a human body communication MAC(31), a human body communication physical layer modem(32) and a transmission signal electrode(330). A human body communication receiving device includes a plurality of receiving signal electrodes(333,335,337), and a human body communication AFEs(332,334,336) connected to the plurality of received signal electrodes(333,335,337), and a receiving unit. The human body communication MAC is composed of a MAX transmitting processor(311) and a MAX receiving processor(312). A transmission unit(321) in the human body communication physical layer modem is composed of a data generator(3210) and a frequency selective diffusion modulator(3211). The signal transmitted through the transmitting signal electrode is delivered through the human body channel. The receiving signal electrode attached to the human body receives the signal delivered through the human body channel. The signal received through the plurality of receiving signal electrodes includes the equal data. If the plurality of receiving signal electrodes are used, the electrode direction of the receiving signal attached to the human body is varied.
Abstract:
A method for modulation and demodulation capable of improving transmitted-data rate using frequency selective baseband and apparatus thereof are provided to reduce energy consumption about a data transmission by using a limited frequency band. A method for modulation and demodulation capable of improving transmitted-data rate using frequency selective baseband comprises the following steps: a step for generating a plurality of sub groups by dividing a total spreading code of 2N(N is real number) used for a spread spectrum into a number unit of 2M(M
Abstract:
A human body contact control apparatus is provided to automatically control whether to make a ground electrode come in contact with human body according to human body contact locations(for example, wrist and the fingertips) of a system. A human body contact control apparatus comprises the followings: a resistance measuring means(402) for applying predetermined voltage in the human body through a signal electrode and measuring the resistance value between the ground electrode and the signal electrode; a contact control means(401) for providing a human body contact controlling signal after determining whether to make a ground electrode come in contact with the human body by using the measured resistance value; and a contact performing means for making the ground electrode come in contact with the human body according to the human body contact controlling signal.
Abstract:
A digital communication system using a frequency selective baseband and a method thereof are provided to reduce the complexity of analog transmitting/receiving terminals using the serial/parallel conversion of data and a frequency selective diffusion code, thereby improving the power consumption of the entire system. A transmitter(221) in a digital communication system comprises a preamble/header transmitting unit(2210,2211,2212,2213), a data transmitting unit(2214,2215,2216,2217), and a multiplexing unit(2218). The preamble/header transmitting unit diffuses header information comprised of a preamble for frame synchronization and data property information. The data transmitting unit diffuses data to be transmitted to the outside using a frequency selective diffusion code. The multiplexing unit performs the multiplexing of the preamble and header diffused by the preamble/header transmitting unit, and data diffused selectively according to a frequency in the data transmitting unit and transmits the diffused preamble, header and data which are converted into digital signals.
Abstract:
A portable DMB(Digital Multimedia Broadcasting) apparatus for human body communication, a method thereof, an HMD(Head Mounted Display) apparatus for DMB reception using human body communication, and a method thereof are provided to enable a user, who carries a portable terrestrial DMB receiver, to conveniently watch a terrestrial DMB program by using his body as a transport channel, without an additional cable or antenna. A portable DMB apparatus for human body communication comprises a DMB receiver(101) and a transmitting electrode(206). The DMB receiver(101) receives and processes DMB signals and converts them into audio/video signals. Also the DMB receiver(101) conveys IF-band broadcast signals or transport streams, which are created in the process of receiving and processing the DMB signals, to the transmitting electrode(206). The transmitting electrode(206) supplies the IF-band broadcast signals or the transport streams to a user's body as DMB signals for human body communication. In addition, the portable DMB apparatus comprises an output part(205). The output part(205) outputs the audio/video signals.