Abstract:
본 발명은 연료전지 분리판용 복합체 및 그 제조방법에 관한 것으로, 보다 상세하게는 복합체의 분산성을 향상시키고, 접촉저항을 감소시키며 굽힘강도를 향상시킬 수 있도록 카본나노튜브가 성장된 카본파이버를 전도성 첨가제로서 첨가시켜 폴리머 및 첨가제와의 복합체를 형성하여 전기적 및 기계적 특성을 향상시킬 수 있으면서 대량생산에 적합한 공정성을 가지는 연료전지 분리판용 복합체 및 그 제조방법에 관한 것이다.
Abstract:
PURPOSE: A composite for fuel cell separator is provided to obtain dispersity of carbon nanotubes, and to improve electricity by the carbon nanotubes, and to improve mechanical properties because of carbon fiber. CONSTITUTION: A composite for fuel cell separator comprises a conductive additive, additives, and polymer. The conductive additive is a carbon fiber(1) grown on carbon nanotubes(3). The diameter of the carbon fiber is 5-10 micron. The diameter of the carbon nanotube grown on the carbon fiber is 10-100 nm and a length is 5-300 micron.
Abstract:
PURPOSE: A method for manufacturing carbon nanotube with a sea urchin shape is provided to exhibit excellent dispersibility, conductivity and mechanical strength in a conductive filler-polymer composite material and to prepare the carbon nanotube with a sea urchin shape applicable to a conductive film or a separator for a fuel battery. CONSTITUTION: A method for manufacturing carbon nanotube with a sea urchin shape comprises the steps of: forming a catalyst layer made of a transition metal material on the surface of metal particles; injecting the metal particles in which the catalyst layer is formed into an electric furnace; injecting hydrocarbon gas inside the electric furnace, floating the metal particles, and synthesizing the carbon nanotube on the catalyst layer of the metal particle surface at the temperature of 600~900 °C using the catalyst reaction.
Abstract:
PURPOSE: A diamond electrode for a glucose biosensor and a manufacturing method thereof are provided to detect low-concentration glucose using the diamond electrode in which enzymes are fixed to nanowires. CONSTITUTION: A diamond electrode for a glucose biosensor comprises nanowires and enzymes. The nanowires are composed of conductive polymers. The conductive polymers are composed of polyacetylene, polyaniline, polypyrrole, polythiophene, and polysulfonate. The enzymes are fixed to the nanowires. The diamond electrode is doped with boron.
Abstract:
본 발명은 연료전지용 분리판 및 그의 제조 방법에 관한 것으로 후속의 코팅층 형성시 표면 접촉저항을 감소시켜, 코팅이 원활히 이루어질 수 있도록 하기 위하여 금속 기판 표면에 탄소나노튜브층을 먼저 형성한 후 페인팅, 스크린 코팅, 디핑(dipping) 또는 테이프 캐스팅(tape casting) 방법을 이용하여 전도성 첨가제를 포함하는 고분자를 짧은 시간 내에 10 ~ 300㎛로 코팅함으로써, 금속의 부식을 방지할 수 있도록 하는 발명에 관한 것이다.
Abstract:
본 발명은 자동차용 베어링 씰 및 그 제조 방법에 관한 것으로, 보다 상세하게는 내마모성과 밀폐성 가공성을 향상시킬 수 있도록 아크릴로니트릴-부타디엔 고무 수지에 습식 분산 방법을 통하여 분산된 나노 입자를 첨가하여 고내마모성, 저토크, 고밀폐성을 가지며 대량생산에 적합한 자동차용 베어링 씰 및 그 제조방법에 관한 것이다.
Abstract:
나노 다이아몬드 입자의 정전하 자기조립 방법을 이용한 기판의 전처리방법 및 이를 이용한 다이아몬드 박막 증착방법이 제공된다. 본 발명에 따른 나노 다이아몬드 입자의 정전하 자기조립 방법을 이용한 기판의 전처리방법은 (a) 나노 다이아몬드 입자의 표면을 상기 나노 다이아몬드 입자 표면의 정전하와 반대되는 극성을 갖는 고분자로 코팅하는 단계; (b) 기판의 표면을 상기 기판의 정전하와 반대되는 극성을 갖는 고분자로 표면처리하는 단계; 및 (c) 상기에서 코팅된 나노 다이아몬드 입자가 분산된 용액에 상기 표면처리된 기판을 침지시켜 상기 나노 다이아몬드 입자가 정전하에 의한 자기조립을 통해 기판에 증착됨으로써 다이아몬드 박막 증착시 증착핵으로 작용하도록 하는 단계를 포함하는 것을 특징으로 하며, 본 발명에 따르면 표면 평활도가 매우 우수한 100nm 이하의 다이아몬드 박막을 제조할 수 있고, 100nm 이상의 다이아몬드 박막의 경우에도 기판에 물리적 충격 또는 잔류응력의 문제없이 균일한 다이아몬드 박막을 제조할 수 있다.
Abstract:
PURPOSE: A separator for a fuel cell using a conductive polymer is provided to prevent corrosion of metal, to increase power density, and to reduce contact resistance generated when coating composite materials. CONSTITUTION: A separator for a fuel cell comprises a substrate(200), a carbon nanotube layer(250) installed on whole surface of the substrate, and a composite layer(280) containing a mixture(260) of conductive additive and a polymer at the upper part of the carbon nanotube layer. The substrate comprises an air or hydrogen gas channel of uneven shape which is formed at the first side of a metal plate material; and a coolant channel of uneven shape which is formed at the second side of a metal plate material.
Abstract:
A method for preparing a PTFE coating solution is provided to reduce the frictional coefficient of a PTFE coating layer, the bad effect due to heat and specific wear rate, thereby improving the lifetime of a PTFE coating layer. A method for preparing a PTFE coating solution comprises the steps of adding an organic solvent and a carbon nanoparticle to a container containing a bead to mix them and adding an impeller to seal it; rotating the impeller with a velocity of 1,000-3,000 rpm to pulverize it to obtain a carbon nanoparticle organic dispersion having an average diameter of 300-1,000 nm; and separating the organic dispersion from the bead and the container and mixing it with a nonaqueous PTFE solution containing PTFE and NMP to prepare a PTFE coating solution having a sintering temperature of 200-250 deg.C.