Abstract:
The present disclosure relates to a blow-molded, rigid collapsible liner that can be suitable particularly for smaller storage and dispensing systems. The rigid collapsible liner may be a stand-alone liner, e.g., used without an outer container, and may be dispensed from a fixed pressure dispensing can. Folds in the rigid collapsible liner may be substantially eliminated, thereby substantially reducing or eliminating the problems associated with pinholes, weld tears, and overflow. The present disclosure also relates to systems and liners, including the liners just mentioned, that may be used as alternatives to, or replacements for, simple rigid- wall containers, such as those made of glass. Such advantageous systems and liners may replace simple rigid-wall containers in a system for delivering a high purity material to a semiconductor process substantially without modification to an end user's existing pump dispense or pressure dispense systems.
Abstract:
Un dispositivo (10, 110, 300) de almacenamiento y dispensación de fluidos que comprende: un recipiente (12, 112, 302) de almacenamiento y dispensación de fluidos para contener fluido a presión y que tiene una boca de salida; y un regulador de presión (26, 232) que incluye una válvula montada en dicho recipiente aguas arriba de, y en comunicación con, dicha boca, caracterizado porque: dicha válvula se mantiene cerrada para impedir que el fluido sea dispensado por dicha boca hasta que dicho regulador de presión reciba gas a presión subatmosférica a través de dicha boca desde aguas abajo del mismo, y se abre en respuesta a la recepción de dicho gas a presión subatmosférica.
Abstract:
A fluid storage and dispensing system (10) comprising a vessel (12) for holding a fluid (17) at a desired pressure. The vessel has a pressure regulator (26) set at a predetermined pressure. The regulator may be interiorly or exteriorly positioned, single-staged or multi-staged, and is associated with a port of the vessel. A dispensing assembly, e.g. including a flow control means such as a valve (20), is arranged in gas/vapor flow communication with the regulator (26), whereby the opening of the valve effects dispensing of gas/vapor from the vessel (12). The fluid in the vessel may be constituted by a liquid that is confined in the vessel at a pressure in excess of its liquefaction pressure at prevailing temperature conditions, e.g. ambient (room) temperature.
Abstract:
A hydrogen sensor including a piezoelectric device with a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered frequency response characteristic, relative to reference conditions of sensor operating corresponding to the frequency response in the absence of hydrogen. The piezoelectric device may be for example a quartz microbalance or a surface acoustic wave device, having a thin film (e.g., 10-100,000 Angstroms thickness) coating thereon of a hydrogen-interactive metal such as palladium, platinum, nickel or the like.
Abstract:
A valve assembly for controlling gas delivery from a higher pressure fluid source to a lower pressure processing tool comprising a valve poppet movingly engageable with a valve seating member and a fluid permeable insert positioned between the valve poppet and the valve seating member that is unexposed to flowing fluid when the valve poppet is in a closed position thereby preventing fluid flow through the valve assembly and provides a diffusional path for transfer of all flowing fluid when the valve poppet is in an open position. The permeable insert can be inserted into the sealable and engageable surface of either the valve seat member or the valve poppet.
Abstract:
A pressure dispense method and system for reducing the presence of folds for a liquid-filled liner within an overpack while reducing the loads and stresses on the liquid-filled liner. The flexible liner is of a conformal size and shape to the interior space of the overpack so that the flexible liner does not pull downward and away from the interior surface of the overpack when the flexible liner is filled with a liquid. The flexible liner also configured to eliminate folding in upon itself when the liner is filled with a liquid within the overpack.
Abstract:
The present disclosure relates to a blow-molded, rigid collapsible liner that can be suitable particularly for smaller storage and dispensing systems. The rigid collapsible liner may be a stand-alone liner, e.g., used without an outer container, and may be dispensed from a fixed pressure dispensing can. Folds in the rigid collapsible liner may be substantially eliminated, thereby substantially reducing or eliminating the problems associated with pinholes, weld tears, and overflow. The present disclosure also relates to flexible gusseted or non-gusseted liners, which is scalable in size and may be used for storage of up to 200 L or more. The flexible gusseted liner may be foldable, such that the liner can be introduced into a dispensing can. The liner can be made of thicker materials, substantially reducing or eliminating the problems associated pinholes, and may include more robust welds, substantially reducing or eliminating the problems associated weld tears.