Abstract:
A power transmission system (100) for a vehicle includes: an engine (4); input shafts, at least one of which configured to selectively engage with the engine (4); output shafts configured to mesh with a corresponding shift driving gear; a transmission gear (6) provided on one output shaft; a motor power shaft (3); first and a second motor gears (31, 32) fitted over the motor power shaft (3); a motor synchronizer (33c); a reverse gear (71) fitted over the motor power shaft (3); a middle idler (73) configured to mesh with the shift driving gear; a reverse idler gear (72) configured to mesh with the reverse gear (71) and to selectively rotate together with the middle idler (73 ); and a first motor generator (51) configured to operate correspondingly with the motor power shaft (3). A vehicle including the power transmission system (100) is also provided.
Abstract:
A power transmission system (100) for a vehicle and a vehicle including the same are provided. The power transmission system (100) includes: an engine unit (1); a plurality of input shafts, in which the engine unit (1) is configured to selectively engage with one of the input shafts when the engine unit (1) transmits power to the input shafts; a plurality of driving gears (25) with one driving gear (25) disposed on one input shaft; an output shaft (24) configured to transfer the power from the input shafts; one or more linked gears (26) rotatable at a different speed relative to the output shaft (24), in which the linked gears (26) include a plurality of gear parts, the gear parts being configured to mesh with the driving gears (25) on the input shafts; an output unit (5) coupled on the output shaft (25) and configured to transmit the power to front wheels (210) of the vehicle; a synchronizer (6) disposed on the output shaft (24) and configured to selectively engage with the linked gear (26) so as to drive one or more wheels (200) of the vehicle via the power output by the output unit (5); and a first motor generator (41) configured to directly or indirectly couple with one of the input shaft and the output shaft (24) for power transmission.
Abstract:
A vehicle and a drive control method for the same are provided. The vehicle includes an engine unit, a transmission unit configured to selectively coupled with the engine unit, a first motor generator coupled with the transmission unit, an output unit configured to transmit a power transmitted by the transmission unit to at least one of front and rear wheels of the vehicle, a power switching device configured to adjust a power transmission between the transmission unit and the output unit, a second motor generator configured to drive the at least one of the front and rear wheels, and a power battery coupled with the first and second motor generators respectively. The drive control method includes: acquiring an operation parameter of the vehicle; and performing a drive control of the vehicle based on the operation parameter and an operation mode selected from operation modes of the vehicle.
Abstract:
The present invention discloses a hybrid power output system for outputting the power to the wheel driving shaft, comprising an engine, a first motor, a second motor, a battery, a first clutch, a second clutch and a constant-mesh fixed ratio reduction unit, wherein the first motor and the second motor are connected electrically with the battery; the engine is connected to the first motor via the first clutch; the first motor is connected to the second motor via the second clutch; the second motor is connected to the wheel driving shaft via the constant-mesh fixed ratio reduction unit. This hybrid power output system can enhance the comfort of the vehicle, save the space and reduce the cost, moreover, it can realize multiple drive modes to improve the power efficiency and reduce the fuel consumption.
Abstract:
A hybrid power output system for outputting the power to the wheel driving shaft, comprising an engine (1), a first motor (2), a second motor (3), a third motor (12), a battery (6), a first clutch (4), a second clutch (5), and a third clutch (11), wherein the first motor (2) and the second motor (3) are connected electrically with the battery(6), and the third motor (12) is connected electrically with the battery or another battery; the engine(1) is connected to the first motor (2) via the first clutch (4), and connected to the third motor (12) via the third clutch (11); the first motor (2) is connected to the second motor (3) via the second clutch (5), and the second motor is connected to a wheel driving shaft (8). The hybrid power output system can reduce the response time of the vehicle, perfect its power performance, save the space and reduce the cost as well.
Abstract:
The present disclosure discloses an electric vehicle and an active safety control system and method thereof. The system includes: a wheel speed detection module configured to detect a wheel speed to generate a wheel speed signal; a steering wheel rotation angle sensor and a yaw rate sensor module, configured to detect state information of the electric vehicle; a motor controller; and an active safety controller configured to receive the wheel speed signal and state information, obtain state information of a battery pack and state information of four motors, obtain a first side slip signal or a second side slip signal according to the wheel speed signal, the state information, the battery pack and the four motors, and according to the first side slip signal or the second side slip signal, control four hydraulic brakes of the electric vehicle and control the four motors by using the motor controller.
Abstract:
Disclosed are a carrier communication method based on electric automobile charging/discharging, comprising the following steps: S1: after being powered up and started, an electric automobile detecting whether a carrier signal from a peripheral device is received through an interface wire harness and whether the carrier signal is correct; S2: when detecting the carrier signal and detecting that the carrier signal is correct, the electric automobile receiving the carrier signal through the interface wire harness; and S3: the electric automobile performing coupling and filtering on the received carrier signal to convert the carrier signal into a standard carrier signal, and demodulating the standard carrier signal into a digital signal to obtain information of the peripheral device. The method, on the basis of not increasing the number of wire harness, may implement data transmission and sharing between an automobile and ECU modules of a peripheral device, and carrier communication with other signal lines as communication media at the same time, so as to avoid construction and investment of a new communication network, and reduce manufacturing cost and maintenance difficulty. Further disclosed are a carrier communication system and a carrier apparatus based on electric automobile charging/discharging.
Abstract:
The present invention provides a method for controlling an engine unit in a vehicle. The vehicle includes an engine unit, a transmission unit adapted to selectively couple with the engine unit and also configurd to transmit the power generated by the engine unit, a first motor generator coupled with the transmission unit, an output unit, a power switching device, a second motor generator configured to drive at least one of front and rear wheels, and a power battery that is respectively connected to the first motor generator and the second motor generator. The method includes: acquiring an operating mode of a vehicle and an operating parameter of the vehicle; and controlling an engine unit according to an operating parameter and an operating mode to start or stop.
Abstract:
A hybrid vehicle includes a multi-mode power system. The power system includes a battery, an electrical power input, a first motor/generator, a second motor/generator, and a clutch. A first operating mode is defined by deactivation of the internal combustion engine and the operation of the vehicle by electrical force provided from the battery to the second motor/generator. In a second operating mode, activation of the internal combustion engine generates electrical power by providing rotational force to the first motor/generator. In a third operating mode, engagement of the clutch couples the internal combustion engine and the second motor/generator to provide rotational force to the wheels. In a fourth operating mode, engagement of the clutch couples the internal combustion engine with the second motor/generator, and the first motor/generator further provides rotational force to the wheels.