Abstract:
Knit fabric compositions have now been discovered that often have a balanced combination of desirable properties. Said fabric compositions comprise olefin block interpolymers. These compositions allow for improved processability when manufacturing knitted fabrics.
Abstract:
A fiber is obtainable from or comprises a propylene/α-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and 1 cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re >1481-1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non- woven fabrics can be made from such fibers.
Abstract:
A fiber is obtainable from or comprises an ethylene/α-olefm interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and (1) cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re >1481-1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non-woven fabrics can be made from such fibers.
Abstract:
Fibers having improved resistance to moisture at elevated temperatures comprise at least two elastic polymers, one polymer heat-settable and the other polymer heat-resistant, the heat-resistant polymer comprising at least a portion of the exterior surface of the fiber. The fibers typically have a bicomponent and/or a biconstituent core/sheath morphology. Typically, the core comprises an elastic thermoplastic urethane, and the sheath comprises a homogeneously branched polyolefin, preferably a homogeneously branched substantially linear ethylene polymer.