Abstract:
A secure remote actuation system may comprise a remote input receptor, network device and a network. The remote input receptor may comprise a user interface for receiving user inputs from a user. The network may store acceptable inputs. The network may further comprise a network device for obtaining the user inputs from the remote input receptor by a wired connection and communicating with the network using a wireless transceiver. In the present invention, the network device obtains the user inputs from the remote input receptor while the user is using the user interface. The network then compares the user inputs to the acceptable inputs and actuates one or more devices based on a result of the comparison.
Abstract:
A method for enabling access to an enclosure is disclosed. Such a method includes obtaining an access code configured to enable access to an enclosure. The enclosure includes an access barrier capable of moving between a fully open position and a fully closed position. The method further establishes, for the access code, a setting associated with an intermediate position between the fully open position and the fully closed position. The setting may include, for example, an amount of time needed by an access mechanism to move the access barrier from the fully closed position to the intermediate position or an intermediate value between a first value associated with the closed position and a second value associated with the open position. Use of the access code to access the enclosure causes the access barrier to stop at the intermediate position. A corresponding system is also disclosed.
Abstract:
A method for more efficiently delivering goods to recipients is disclosed. Such a method includes receiving a communication, such as an email or text message, containing a unique identifier (e.g., tracking number, order number, product number, etc.). The unique identifier is associated with an order of goods intended for delivery to a recipient. The method extracts the unique identifier from the communication and generates an access code for association with the unique identifier. The access code enables a delivery agent to gain access to an enclosure of the recipient for deposit of the goods therein. In certain embodiments, the access code is derived from the unique identifier, such as by using certain digits or portions of the unique identifier to generate the access code. A corresponding system is also disclosed.
Abstract:
There is disclosed a system and method for detecting potentially unauthorized access to an enclosure. The system and method use an input device, wherein the input device includes a user interface comprising a communication tilt plate with a front side and a back side. The front side comprising an outer touch surface and the back side includes electronic components mounted thereon. The back side also includes a raised center pivot and a plurality of spring loaded switches mounted thereon disposed around the periphery of the back side of the tilt plate. In this way, tilting the communication tilt plate by pressing proximate the periphery of the outer touch surface activates one or more of the spring-loaded switches mounted on the back side of the tilt plate and thereby transmit an access code to a control module. The system and method further include detecting movement of an access barrier of an enclosure and detecting whether a motor and or the access code was used to move the access barrier. The user is notified in the event the access barrier was moved without using the motor and or the access code.
Abstract:
Low data rate wireless electronic devices utilizing a hub- or star-based network topology, operational at ranges of thousands of meters. Remote end-devices may be such things as keypads, door latches, occupancy monitors, sprinkler controllers and other devices controlled or monitored in a campus or a collection of buildings. End-devices operate at intermediate ranges in RF congested areas and failure-intolerant situations through the use of discrete programmable channels. Each end-device carries a unique identifier and uses a common default initialization channel to accept an operational channel assignment from the hub, without a configuring or programming step at the end-device by an installing person. After assignment the end-device can utilize a low-power listening mode that avoids processor-awakening events due to orthogonality of the operational channels. Detailed information on various example embodiments of the inventions are provided in the Detailed Description below, and the inventions are defined by the appended claims.
Abstract:
The invention is a method and device for normalizing communication. The method includes receiving on a first device a first message via a first protocol from a second device; transmitting a second message to a third device via a second protocol, wherein the second message is transmitted using a first spreading factor; initiating a delay timer upon transmitting the second message, wherein a duration of the delay timer is based on a second spreading factor, wherein the second spreading factor is greater than or equal to the first spreading factor; receiving a third message from the third device via the second protocol, wherein the third message is transmitted using the first spreading factor, and wherein the third message is in response to the second message; and upon the expiration of the delay timer, sending a fourth message to the second device via the first protocol. The device includes the hardware and instructions to perform the method.
Abstract:
An apparatus for connecting a number of rotary blade unmanned aerial vehicles (UAVs) is described. The apparatus includes a first physical connector, a first electrical connector, a second physical connector, a second electrical connector, a storage area, and a UAV control unit. The first physical connector attaches the apparatus to a first UAV. The first electrical connector connects electricity between the apparatus and the first UAV. The second physical connector attaches the apparatus to a second UAV. The second electrical connector connects electricity between the apparatus and the second UAV. The storage area stores an energy source for the apparatus. The UAV control unit includes a processor and storage medium. The processor and storage medium are in communication with a cloud based network and receive instructions for the operation of the UAV, including steering instructions, through the cloud based network from a remote control device.
Abstract:
A system for extending the range of a wireless signal is disclosed. A typical or near typical IP packet may be used to establish a connection between a server and a sending device. A server receives the payload of a packet for which delivery information has been removed. The server may package the data into a full IP packet and then communicate with a smart device, such as a door lock.
Abstract:
There is disclosed a system and method for detecting potentially unauthorized access to an enclosure. The system and method use an input device, wherein the input device includes a user interface comprising a communication tilt plate with a front side and a back side. The front side comprising an outer touch surface and the back side includes electronic components mounted thereon. The back side also includes a raised center pivot and a plurality of spring loaded switches mounted thereon disposed around the periphery of the back side of the tilt plate. In this way, tilting the communication tilt plate by pressing proximate the periphery of the outer touch surface activates one or more of the spring-loaded switches mounted on the back side of the tilt plate and thereby transmit an access code to a control module. The system and method further include detecting movement of an access barrier of an enclosure and detecting whether a motor and or the access code was used to move the access barrier. The user is notified in the event the access barrier was moved without using the motor and or the access code.
Abstract:
There is disclosed a system and method for detecting potentially unauthorized access to an enclosure. The system and method use an input device, wherein the input device includes a user interface comprising a communication tilt plate with a front side and a back side. The front side comprising an outer touch surface and the back side includes electronic components mounted thereon. The back side also includes a raised center pivot and a plurality of spring loaded switches mounted thereon disposed around the periphery of the back side of the tilt plate. In this way, tilting the communication tilt plate by pressing proximate the periphery of the outer touch surface activates one or more of the spring-loaded switches mounted on the back side of the tilt plate and thereby transmit an access code to a control module. The system and method further include detecting movement of an access barrier of an enclosure and detecting whether a motor and or the access code was used to move the access barrier. The user is notified in the event the access barrier was moved without using the motor and or the access code.