Abstract:
A plating method which can achieve a desired dome height is disclosed. The method includes: preparing correlation data showing a relationship between proportion of dome height to bump height and concentration of chloride ions; producing a plating solution containing chloride ions at a concentration which has been selected based on a desired proportion of dome height to bump height and on the correlation data, the selected concentration being in a range of 100 mg/dm3 to 300 mg/dm3; immersing a substrate in the plating solution; and passing an electric current between an anode and the substrate, both immersed in the plating solution, thereby plating the substrate to form bumps.
Abstract:
The present invention improves the hydrophilicity of a substrate surface, and suppresses variation in the degree of hydrophilicity with each substrate. A plating apparatus is provided that performs a plating process on a substrate having a resist pattern. This plating apparatus includes a pretreatment bath that performs hydrophilic treatment by bringing a pretreatment liquid into contact with a surface to be plated of the substrate, and a plating bath that performs a plating process on a substrate that has undergone the hydrophilic treatment. The pretreatment bath includes a pretreatment liquid supplying device that supplies the pretreatment liquid into the pretreatment bath, and an ultraviolet light irradiation device that irradiates ultraviolet light onto the surface to be plated of the substrate.
Abstract:
There is provided a method of adjusting a plating apparatus and a measuring apparatus that can obtain position adjustment amounts/a position adjustment amount of a substrate holder, an anode holder, a regulation plate, and/or a paddle without carrying out plating treatment. There is provided the method of adjusting the plating apparatus that has a plating bath configured to be able to hold the substrate holder, the anode holder, and an electric field adjusting plate. The method of adjusting the plating apparatus has the steps of: installing a first jig at a position in the plating bath where the substrate holder is installed; installing a second jig at a position in the plating bath where the anode holder or the electric field adjusting plate is installed; measuring a positional relation between the first jig and the second jig installed in the plating bath using a sensor included in either of the first jig and the second jig; and adjusting an installation position of the substrate holder, the anode holder, or the electric field adjusting plate based on the measured positional relation.
Abstract:
An Sn alloy plating apparatus is disclosed which can relatively easily perform control of an Sn alloy plating solution, including control of the Sn ion concentration and the acid concentration of the plating solution. The Sn alloy plating apparatus includes: a plating bath configured to hold therein an Sn alloy plating solution in which an insoluble anode a the substrate are to be disposed opposite each other; a plating-solution circulation line configured to circulate the Sn alloy plating solution in the plating bath; an Sn supply reservoir configured to draw a part of the Sn alloy plating solution from the plating-solution circulation line, perform electrolysis in a presence of the Sn alloy plating solution to replenish the Sn alloy plating solution with Sn ions and an acid that stabilizes Sn ions, and return the Sn alloy plating solution that has been replenished with the Sn ions to the plating bath; and a dialysis unit configured to draw a part of the Sn alloy plating solution from the plating-solution circulation line, remove the acid from the Sn alloy plating solution, and then return the Sn alloy plating solution to the plating bath.
Abstract:
A plating apparatus plates a substrate with Sn alloy to form an Sn alloy film on a surface of the substrate. The apparatus includes: a plating bath for retaining a plating solution therein, the substrate being immersed in the plating solution in a position opposite to an insoluble anode; a plating solution dialysis line for extracting the plating solution from the plating bath and returning the plating solution to the plating bath; a dialysis cell provided in the plating solution dialysis line and configured to remove a free acid from the plating solution by dialysis using an anion exchange membrane; a free acid concentration analyzer; and a controller for controlling a flow rate of the plating solution flowing through the plating solution dialysis line based on the concentration of the free acid measured by the free acid concentration analyzer.
Abstract:
In a plating apparatus including a shielding member, an ionically resistive element is disposed to be close to a surface to be plated of a substrate to improve uniformity of a distribution of plating film-thickness. A plating apparatus includes: a plating tank 410 configured to house a plating solution; a substrate holder 440 configured to hold a substrate Wf with a surface to be plated Wf-a facing downward; an anode 430 disposed in the plating tank 410; an ionically resistive element 450 disposed between the substrate Wf and the anode 430 and including an opposed surface 450-a opposed to the surface to be plated Wf-a, the opposed surface 450-a including a first opposed surface 450-a1 and a second opposed surface 450-a2 apart from the surface to be plated Wf-a more than the first opposed surface 450-a1; and a shielding member 481 disposed in a depressed region β of the ionically resistive element 450, the depressed region β being formed by the second opposed surface 450-a2. The shielding member 481 is for shielding an electric field.
Abstract:
An objective of the present invention is to provide a plating apparatus capable of improving uniformity of a plating film formed on a substrate. The plating apparatus includes a plating tank, a substrate holder that holds a substrate, an anode disposed, in the plating tank, facing the substrate held by the substrate holder, and a film thickness measuring module including a sensor that detects a parameter related to a plating film formed on a surface to be plated of the substrate, the film thickness measuring module measuring a film thickness of the plating film based on a detection value of the sensor during a plating treatment.
Abstract:
There is provided a method of adjusting a plating module, wherein the plating module comprises a substrate holder configured to hold a substrate, an anode placed to be opposed to the substrate holder, and a plate placed between the substrate holder and the anode to serve as an ionically resistive element. The method comprises: providing a plating module of initial setting, which is initially set in such a state that a porosity in an outer circumferential portion of the plate is adjusted to reduce a plating film thickness in an outer circumferential portion of the substrate to be smaller than a film thickness in another portion; and adjusting a distance between the substrate holder and the plate so as to flatten a distribution of plating film thickness of the entire substrate by adjustment of the distance between the substrate holder and the plate such as to increase a film thickness in the outer circumferential portion of the substrate according to a film thickness distribution of the substrate that is plated in the plating module.
Abstract:
There is provided a substrate holder configured to hold a substrate in an apparatus for plating. The substrate holder comprises a seal configured to seal an outer peripheral part of the substrate and provided with a first opening which a surface to be plated or a plating surface of the substrate is exposed on; and a seal ring holder configured to hold the seal and provided with a second opening which the plating surface of the substrate is exposed on, wherein an opening diameter ratio that is a ratio of an opening diameter of the second opening to an opening diameter of the first opening is in a range of not lower than 99.32% and not higher than 99.80%.
Abstract:
A plating method for plating a substrate by increasing a current value from a predetermined current value to a first current value is provided. The plating method plates the substrate for a first predetermined period with the first current value when a first current density corresponding to the first current value is lower than a limiting current density. This plating method includes measuring a voltage value applied to the substrate, and when the current value is increased from the predetermined current value to the first current value, determining whether the first current density is equal to or more than the limiting current density or not based on an amount of change in the voltage value.