Shielded magnetic tunnel junction magnetoresistive read head

    公开(公告)号:SG67574A1

    公开(公告)日:1999-09-21

    申请号:SG1998004212

    申请日:1998-10-15

    Applicant: IBM

    Abstract: A magnetic tunnel junction (MTJ) magnetoresistive read head for a magnetic recording system has the MTJ device (110,120,130) located between two spaced-apart magnetic shields (S1,S2). The magnetic shields, which allow the head to detect individual magnetic transitions from the magnetic recording medium without interference from neighboring transitions. also function as electrical leads for connection of the head to sense circuitry. Electrically conductive spacer layers (102,104) are located at the top and bottom of the MTJ device and connect the MTJ device to the shields. The thickness of the spacer layers is selected to optimize the spacing between the shields, which is a parameter that controls the linear resolution of the data that can be read from the magnetic recording medium. To reduce the likelihood of electrical shorting between the shields if the shield-to-shield spacing is too small, each of the shields can have a pedestal region (161,163) with the MTJ device located between the two pedestals, so that the shield-to-shield spacing outside the pedestal regions is greater than in the pedestal regions.

    Magnetic tunnel junction device with longitudinal biasing

    公开(公告)号:SG60136A1

    公开(公告)日:1999-02-22

    申请号:SG1997003873

    申请日:1997-10-27

    Applicant: IBM

    Abstract: A magnetic tunnel junction device for use as a magnetic memory cell or a magnetic field sensor has one fixed ferromagnetic layer and one sensing ferromagnetic layer formed on opposite sides of the insulating tunnel barrier layer, and a hard biasing ferromagnetic layer that is electrically insulated from but yet magnetostatically coupled with the sensing ferromagnetic layer. The magnetic tunnel junction in the device is formed on an electrical lead on a substrate and is made up of a stack of layers. The layers in the stack are an antiferromagnetic layer, a fixed ferromagnetic layer exchange biased with the antfferromagnetic layer so that its magnetic moment cannot rotate in the presence of an applied magnetic field, an insulating tunnel barrier layer in contact with the fixed ferromagnetic layer, and a sensing ferromagnetic layer in contact with the tunnel barrier layer and whose magnetic moment is free to rotate in the presence of an applied magnetic field. The stack is generally rectangularly shaped with parallel side edges. A layer of hard biasing ferromagnetic material is located near to but spaced from the side edges of the sensing ferromagnetic layer to longitudinally bias the magnetic moment of the sensing ferromagnetic layer in a preferred direction. A layer of electrically insulating material isolates the hard biasing material from the electrical lead and the sensing ferromagnetic layer so that sense current is not shunted to the hard biasing material but is allowed to flow perpendicularly through the layers in the stack.

    Magnetoresistive sensor
    34.
    发明专利

    公开(公告)号:SG42342A1

    公开(公告)日:1997-08-15

    申请号:SG1996001706

    申请日:1992-02-07

    Applicant: IBM

    Abstract: A magnetoresistive (MR) sensor comprising a layered structure formed on a substrate (11) includes a first (12) and a second (16) thin film layer (14) of magnetic material separated by a thin film layer of non-magnetic metallic material such as Cu, Au, or Ag, with at least one of the layers of ferromagnetic material formed of either cobalt or a cobalt alloy. The magnetization direction of the first ferromagnetic layer, at zero applied field, is set substantially perpendicular to the magnetization direction of the second ferromagnetic layer which is fixed in position. A current flow is produced through the sensor, and the variations in voltage across the MR sensor are sensed due to the changes in resistance produced by rotation of the magnetization in the front layer of ferromagnetic material as a function of the magnetic field being sensed.

Patent Agency Ranking