Transistor device with heterogeneous channel structure bodies and method of providing same

    公开(公告)号:US11101377B2

    公开(公告)日:2021-08-24

    申请号:US15939087

    申请日:2018-03-28

    Abstract: Techniques and mechanisms for providing efficient transistor functionality of an integrated circuit. In an embodiment, a transistor device comprises a first body of a high mobility semiconductor and a second body of a wide bandgap semiconductor. The first body adjoins each of, and is disposed between, the second body and a gate dielectric layer of the transistor. The second body extends between, and variously adjoins, each of a source of the transistor and a drain of the transistor. A location of the second body mitigates current leakage that might otherwise occur via the first body. In another embodiment, a mobility of the first body is equal to or greater than 100 cm2/V·s, wherein a bandgap of the second body is equal to or greater than 2.0 eV.

    Bottom fin trim isolation aligned with top gate for stacked device architectures

    公开(公告)号:US11075202B2

    公开(公告)日:2021-07-27

    申请号:US16650155

    申请日:2018-01-10

    Abstract: An integrated circuit structure includes a first portion of a bottom semiconductor fin extending horizontally in a length direction and vertically in a height direction, a second portion of the bottom semiconductor fin extending horizontally in the length direction and vertically in the height direction, a top semiconductor fin extending horizontally in the length direction and vertically in the height direction, and an insulator region extending horizontally in the length direction to electrically insulate the first portion of the bottom semiconductor fin from the second portion of the bottom semiconductor fin. The insulator region further extends vertically in the height direction in vertical alignment with the top semiconductor fin. The insulator region includes at least one of an insulator material and an airgap. In an embodiment, the top semiconductor fin is associated with a transistor, and the insulator region is in vertical alignment with a gate electrode of the transistor.

    Thin film transistors for memory cell array layer selection

    公开(公告)号:US11017843B2

    公开(公告)日:2021-05-25

    申请号:US16457617

    申请日:2019-06-28

    Abstract: In memory devices where a memory cell includes a thin film cell select transistor, selection between layers of such memory cells may further comprise another thin film select transistor. Bitline and wordline encoding suitable for a memory device having a single layer of memory cells may be scaled up to a 3D memory device having two or more memory cell layers. In a DRAM device one layer of (1TFT-1C) cells may include a 2D array of metal-insulator-metal capacitors over an array of TFTs. Additional layers of such 1TFT-1C cells may be stacked monolithically to form a 3D array. Memory cells in each layer may be accessed through a wordline and local bitline. A local bitline of one cell layer may be coupled to global bitline applicable to all cell layers through a layer-selected TFT according to a voltage applied to a layer-select gate voltage.

    Thin film transistors with a crystalline oxide semiconductor source/drain

    公开(公告)号:US10930679B2

    公开(公告)日:2021-02-23

    申请号:US16461701

    申请日:2016-12-28

    Abstract: Thin film transistors (TFTs) including a channel and source/drain that comprise an oxide semiconductor. Oxide semiconductor within the source/drain may be more ordered than the oxide semiconductor within the channel. The localized increased order of the oxide semiconductor may reduce TFT access resistance while retaining good channel gating properties. In some embodiments, order within the source or drain templates from order in adjacent contact metallization. Contact metal at the interface of the oxide semiconductor may be chosen to promote grain growth in the oxide semiconductor during deposition of the oxide semiconductor, or through solid phase epitaxy of the oxide semiconductor subsequent to deposition. Where TFT circuitry is integrated into the BEOL of a CMOS FET IC fabrication process, an EOL forming gas anneal may be employed to both passivate CMOS FETs and crystalize a source/drain of the TFTs.

    VERTICAL DIODE IN STACKED TRANSISTOR ARCHITECTURE

    公开(公告)号:US20200258881A1

    公开(公告)日:2020-08-13

    申请号:US16649712

    申请日:2018-01-18

    Abstract: An integrated circuit structure includes a first semiconductor fin extending horizontally in a length direction and including a bottom portion and a top portion above the bottom portion, a bottom transistor associated with the bottom portion of the first semiconductor fin, a top transistor above the bottom transistor and associated with the top portion of the first semiconductor fin, and a first vertical diode. The first vertical diode includes: a bottom region associated with at least the bottom portion of the first semiconductor fin, the bottom region including one of n-type and p-type dopant; a top region associated with at least the top portion of the first semiconductor fin, the top region including the other of n-type and p-type dopant; a bottom terminal electrically connected to the bottom region; and a top terminal electrically connected to the top region at the top portion of the first semiconductor fin.

Patent Agency Ranking