Abstract:
A control device and a method for controlling scanning speed of a scanner. The control device includes a decision device and a driving device. The decision device further includes an image buffer, an up-down counter and a comparator. The decision device receives the input image data and utilizes the up-down counter to compute data access volume inside the image buffer. The comparator decides whether to increase or decrease the scanning speed according to the data access volume and also outputs decision data to the driving device.
Abstract:
In accordance with the present invention, a method and a system for promoting scanning speed are provided. The method comprises steps of determining a transmission rate of a transit interface, adjusting system clock responsive to the transmission rate of the transit interface to change a data generated rate, and scanning an original to generate data at the rate controlled by the system clock. The key aspect of the present invention is by adjusting system clock to change the data generated rate corresponding to the transmission rate of the transit interface. Therefore, in response to the transmission rate of the transit interface, the system clock is adjusted to produce the data at a rate that can reduce the possibility of memory buffer full leading to the reduction in the time wasting on start-stop processes and therefore promote the scanning speed without requiring the increase in size of a memory buffer.
Abstract:
A biosensor with multi-channel A/D conversion and a method thereof are provided. The present biosensor includes a chip generating a time-dependent analog signal in response to a content of a specific component of a specimen provided thereon, a multi-channel A/D converter, and a microprocessor. The multi-channel A/D converter has multiple channels simultaneously receiving the time-dependent analog signal in each sampling interval to convert the time-dependent analog signal to a set of digital signals. The microprocessor receives the sets of digital signals in a period of sampling time and determines the content of the specific component based on the sets of digital signals. The present biosensor provides a multi-channel A/D conversion for the time-dependent analog signal to improve the resolution of the determination of the content of the specific component.
Abstract:
A single step multi-section exposure scanning method for a scanner. The scanner includes a photo-sensor and a stepper motor. The photo-sensor has N rows of sensor cells that correspond to each primary color. The scanning device is driven forward an exposure distance for each revolution of the stepper motor. The single step multi-section exposure scanning method includes the following steps. First, the photo-sensor moves forward one exposure distance. One row of sensor cells is exposed after moving every 1/Nth of the exposure distance. Thereafter, analogue voltages obtained through the exposed row of sensor cells are transmitted to an analogue/digital converter. The above process is repeated until the entire document is scanned.
Abstract:
A method for determining a response of each probe zone on a test strip is provided. The present invention selects an average pixel value of each section of reference white respectively adjacent to the image of a target line to serve as a reference for determining a color response of the target line. When the color response is not less than a predetermined value, representing the target line has a positive response in response to a specific component of a tested solution tested by the test strip, and the specific component is present in the tested solution. The content of the specific component is proportional to the color response. When the color response is less than a predetermined value, representing the target line has a negative response in response to the specific component of the tested solution, and the specific component is absent in the tested solution.
Abstract:
The present disclosure provides a repeated sampling method for image scanning. In one or more embodiments, the sampling method may comprise a sample treatment procedure for the data of an image scanning device during the scanning of an image. The method may comprise sampling, sorting, eliminating one or more group-departing values, and getting a mean value, etc. The sampling procedure may involve scanning a single point of the image several times to produce several sets of sampling values. The sorting procedure may involve sorting the several sets of sampling values after being sampled according to their magnitude. The eliminating group-departing values procedure may involve obtaining the relatively larger values and relatively smaller values from the several sets of sampling values after being sorted. The getting mean value procedure may involve obtaining a mean value from the several sets of sampling values. By applying the repeated sampling method the error of data pick-up during the procedure of scanning may be reduced.
Abstract:
A method for differentiating dynamic range of image is disclosed. The method comprises the following steps. First of all, pixel numbers with the same level value of Density units Dn-1 and Dn are compared. Next the minimum pixel number of each level value of Density units Dn-1 and Dn are counted. Then the minimum pixel numbers of each level value of Density units Dn-1 and Dn are summed. Next the ratio of total minimum pixel number and total pixel number R and a specification value Rs are compared. Then whether R is smaller than Rs or not is determined so as to recognize whether Density units Dn-1 and Dn could be differentiated or not.
Abstract:
A method for recognizing abnormal image is disclosed. The invention utilizes level comparisons of adjacent image lines to determine if there is any abnormal image amid an image picture and whether the abnormal image belongs to shading or LBB. The method comprises the following steps. First of all, two adjacent image lines having level values Pi and Pi−1 are selected. Then an absolute value of the Pi and the Pi−1 is calculated. Next the absolute value is compared with a value X. When the absolute value is smaller than X, then the image lines are determined as normal. On the contrary, when the absolute value is larger than X, then at least one of the image lines is determined as abnormal. Moreover, another two image lines having level values Pi+1 and Pi−2 separately adjacent the image lines having level values Pi and the Pi−1 are selected. An absolute value of the Pi+1 and the Pi−2 is calculated and the absolute value of the Pi+1 and the Pi−2 is compared to the value X. When the absolute value of the Pi+1 and the Pi−2 is smaller than X, then the image lines having level values Pi and Pi−1 are determined as shading. However, when the absolute value of the Pi+1 and the Pi−2 is larger than X, then the image lines having level values Pi, Pi−1, Pi+1 and Pi−2 are determined as LBB.
Abstract:
A method for differentiating dynamic range of image is disclosed. The method comprises the following steps. First of all, pixel numbers with the same level value of Density units D.sub.n−1 and D.sub.n are compared. Next the minimum pixel numbers of each level value of Density units D.sub.n−1 and D.sub.n are counted. Then the minimum pixel numbers of each level value of Density units D.sub.n−1 and D.sub.n are summed. Next the ratio of total minimum pixel number and total pixel number R and a specification value R.sub.s are compared. Then whether R is smaller than R.sub.s or not is determined so as to recognize whether Density units D.sub.n−1 and D.sub.n could be differentiated or not.
Abstract:
An image data sequencing method for a memory unit inside an optical scanning device. The image data sequencing method is particularly suitable for scanning a line of pixels with each pixel comprising a plurality of primary colors. The image data sequencing method involves scanning a line of pixels to obtain the data for a primary or secondary color. The pixels within the scan line are subdivided into groups. A storage space is reserved both before and after the address space inside the memory unit for holding the scanned primary or secondary color data so that all the primary or secondary color data constituting a pixel are in a fixed sequence next to each other inside the memory unit. When all the primary or secondary color data of pixels within a group are secured, the group of data is released from the memory unit.