Abstract:
Communications sourced by a remote unit ( 14 ) that is already within reception range of a base site ( 10 ) can nevertheless be further facilitated through allocation of one or more relay resources ( 15, 16 ). Such relay resources, properly employed, then serve to effectively increase the quality of service for the facilitated communication. This, in turn, can permit the use of, for example, increased data rates for communications from a relatively low power remote unit.
Abstract:
A method in a wireless communication terminal (103) including receiving a plurality of sub-frames having time-frequency resource elements and resource allocation fields associated with a corresponding sub-frame, wherein the resource allocation fields indicate a resource assignment. In another embodiment, terminal receives a radio frame comprising a plurality of sub-frames and a frequency diverse allocation field indicating frequency diverse resource allocations in multiple sub-frames of the radio frame.
Abstract:
A method for communicating channel estimates on a plurality of subcarriers between a transmitting device and a receiving device. The transmitting device determines a channel estimates on a plurality of subcarriers and then encodes the channel estimates into at least one encoded channel waveform. Then the transmitting device transmits the at least one encoded channel waveform to the receiving device.
Abstract:
A method for assigning resources to FS and FNS users, for example, in an OFDM wireless communication system 100, including assigning a first frequency resource to at least one FS user during a time interval, wherein the first frequency resource includes at least two near contiguous sub-carriers, and assigning a second frequency resource to at least one FNS user during the same time interval, the second frequency resource includes for each FNS user at least two non-contiguous sub-carriers, wherein the first and second frequency resources are part of a common frequency channel.
Abstract:
A method for providing a low-feedback scheme for link-quality reporting based on the EESM technique is provided herein. During operation, a node will analyze the current channel conditions and determine a non-linear approximation of the carrier to interference plus noise ratio (CINR). The non-linear approximation is sent to a communication unit as a channel-selectivity report, causing the communication unit to utilize the report to assist with modulation and coding selection.
Abstract:
In a multi-carrier communication system employing adaptive modulation and coding, a receiver feeds back channel quality information for a "binned" group of subcarriers instead of sending an individual quality report for each subcarrier. A transmitter will utilize the channel quality information for the bin to determine a set of ?eff values corresponding to a set of modulation and coding scheme candidates, where ?eff is an effective SNR that would yield a same FER in an AWGN channel. The transmitter utilizes the set of ?eff values to aid in determining a modulation and coding scheme, and determine a single modulation and coding scheme for all subcarriers within the channel.