Abstract:
A data message transmission system for a cellular radiotelephone system is disclosed. Data to be transmitted is converted into a format compatible with radio transmission prior to transmission. The data is reconverted to its original format following reception. Handoff is accomplished by halting the data transmission prior to handoff and resuming data transmission after handoff. Call supervision occurs via busy-idle bit coding.
Abstract:
A cellular radiotelephone system provides service to remote units having a voice operated transmitter (VOX) (230). If the regularly scheduled periodic signal quality measurements made by fixed site equipment (210, 220, 230, 240, 250) indicate that the remote unit signal has not been received for a predetermined number of measurements, an audit request is transmitted to the remote unit. The remote unit responsively keys its transmitter for a period of time. A first special scan (24) is programmed into the regular process such that the fixed site equipment (210, 220, 230, 240, 250) may continue with its regular process until the signal quality measurement must be made. A second measurement is made following the first and if the two signal quality measurements made while the VOX remote unit is known to be transmitting agree, system reconfiguration for the service of this remote unit may be implemented by the cellular system.
Abstract:
A wireless communication system (200, 300, 400, 500) mitigates the effects of excess timing delay caused by varying lengths of communication paths. In one general implementation, a transition communication path (206, 323, 329) is used to transfer a time-advanced version of a timing reference signal so that the cumulative time delay at a transition cell (209, 325, 331) is reduced. In another general implementation, the timing reference signal is time-advanced in all communication paths (403-411), and selected communication paths (403-407) include a time delay means (423-427, 503-507) such that the cumulative time delay at an area (421) near a target coverage area (130) is reduced. By reducing the cumulative time delay at the area (421) near the target coverage area (130), a hand-off of a communication of a mobile station (128) into the target coverage area (130) can be performed.
Abstract:
A data message transmission system for a cellular radiotelephone system provides protection against data loss caused by multipath fade and subscriber unit handoff. Data from data terminal equipment (801) to be transmitted is converted by a system data processor (805) and radio signalling interface (807) into a format compatible with radio transmission prior to transmission by a transceiver (809). The data is reconverted to its original format following reception. Handoff is accomplished by halting the data transmission prior to handoff and resuming data transmission after handoff. Call supervision occurs via busy-idle bit coding performed in radio signalling interface (807).
Abstract:
An improved TDMA radiotelephone cellular communication system (122, 115, 199) employs an improved cell site scan monitoring technique. The technique includes monitoring radiotelephone calls, and tracking and recording their signal qualities. The records are used to maintain and determine which frequencies and which time partitions at the base site equipment (115, 119) are being utilized for radiotelephone communication. When a new call assignment is required at a cell site (115 or 119), it is assigned to a time partition of a base site equipment frequency in a frequency prioritized manner such that radiotelephone calls are concentrated within each frequency so as to reduce the number of frequencies carrying radiotelephone calls.
Abstract:
A data message transmission system for a cellular radiotelephone system is disclosed. Data to be transmitted is converted into a format compatible with radio transmission prior to transmission. The data is reconverted to its original format following reception. Handoff is accomplished by halting the data transmission prior to handoff and resuming data transmission after handoff. Call supervision occurs via busy-idle bit coding.
Abstract:
2045466 9014720 PCTABS00002 A signal routing system for use in cellular RF communications systems wherein a signal can be routed to different antennas, effectively switching transmitters between antennas. The switching is accomplished by placing a frequency responsive device (7) between a transmitter and each antenna. The transmitter is then coupled to an antenna through the frequency responsive device (7) that has a resonant frequency equal to the transmitter's frequency. If the transmitter changes frequency, it will be switched to the appropriate antenna through the corresponding frequency responsive device (7). This system permits a sector of a cell to increase the number of frequencies in that sector to handle increased mobile traffic loads.