DETERMINING SEARCH RESULTS FOR AN ONLINE SHOPPING CONCIERGE PLATFORM

    公开(公告)号:US20240177212A1

    公开(公告)日:2024-05-30

    申请号:US18072353

    申请日:2022-11-30

    CPC classification number: G06Q30/0631

    Abstract: To determine search results for an online shopping concierge platform, the platform may receive, from a computing device associated with a customer of an online shopping concierge platform, data describing one or more search parameters input by the customer; identify, based at least in part on the data describing the search parameter(s), products offered by the online shopping concierge platform that are at least in part responsive to the search parameter(s); and determine, for each product and based at least in part on one or more machine learning (ML) models, a relevance of the product to one or more taxonomy levels of a product catalog associated with the online shopping concierge platform, a likelihood that the customer would be offended by inclusion of the product amongst displayed responsive search results, and/or the like.

    Determining generic items for orders on an online concierge system

    公开(公告)号:US11468493B2

    公开(公告)日:2022-10-11

    申请号:US16984443

    申请日:2020-08-04

    Abstract: An online system provides options for selection by a user. The online system receives a query entered on a client device. The online system queries an item database to retrieve a set of items related to the query and assigns each item to a product category in a predefined taxonomy that maps items to product categories. The online system inputs each item into a prediction model trained to predict a probability that an item is available at a warehouse location. The online system determines that a first product category has low availability based on predicted probabilities for items in the first product category. Responsive to determining that a first product category has low availability, the online system generates a generic item for the first product category and sends a list of items including the generic item to the client device for display responsive to the query.

    ENABLING MULTI-LANGUAGE COLD START SEARCH USING A LARGE LANGUAGE MODEL

    公开(公告)号:US20250165513A1

    公开(公告)日:2025-05-22

    申请号:US18948027

    申请日:2024-11-14

    Applicant: Maplebear Inc.

    Abstract: An online system uses a machine-learned language model (e.g., an LLM) to improve multilingual search capabilities. The system generates a prompt for the LLM that includes a set of search queries in a first language along with their context, as well as a request for translating these queries into a second language. This prompt is sent to a model serving system, which executes it through the LLM and returns translated queries in the second language. Additionally, the concierge system accesses a first set of features derived from the search results in the first language, and updates these features based on the newly translated search queries to create a second set of features. These translated queries and the second set of features are then used to train a search model optimized for queries in the second language.

    CONTEXTUAL BANDIT MODEL FOR QUERY RESULT RANKING OPTIMIZATION

    公开(公告)号:US20250139681A1

    公开(公告)日:2025-05-01

    申请号:US18496720

    申请日:2023-10-27

    Applicant: Maplebear Inc.

    Abstract: A system uses a contextual bandit model for query processing. The system receives, from a client device, a user query for identifying one or more items by the system and described by query feature(s). The system obtains contextual feature(s) describing the query's context. The system applies a query processing model to the user query to determine a relevance score for each query result. The system applies a contextual bandit model to the query features and the contextual features to determine a weight vector for ranking parameters. The ranking parameters include relevance of a query result to the user query and dependability of the query result. The system determines, for each query result, a ranking score based on the weight vector and ranking parameter values of the query result. The system transmits the query results ranked according to the ranking scores for display on the client device.

    Accounting for item attributes when selecting items satisfying a query based on item embeddings and an embedding for the query

    公开(公告)号:US12259894B2

    公开(公告)日:2025-03-25

    申请号:US17666531

    申请日:2022-02-07

    Applicant: Maplebear Inc.

    Abstract: An online system maintains various items and maintains values for different attributes of the items, as well as an item embedding for each item. When the online system receives a query for retrieving one or more items, the online system generates an embedding for the query. Based on measures of similarity between the embedding for the query and item embeddings, the online system selects a set of items. The online system identifies a specific attribute of items and generates a whitelist of values for the specific attribute based on measures of similarity between item embeddings for items in the selected set and the embedding for the query. The online system removes items having values for the selected attribute outside of the whitelist of values from the selected set of items to identify items more likely to be relevant to the query.

Patent Agency Ranking