Abstract:
Disclosed is an integrated circuit comprising a substrate (10) carrying plurality of circuit elements (20); a metallization stack (30) over said substrate for providing interconnections to at least some of said circuit elements, the metallization stack comprising a plurality of patterned metal layers (31) spatially separated from each other by respective electrically insulating layers (32), at least some of said electrically insulating layers comprising conductive portions (33) that electrically interconnect portions of adjacent metal layers, wherein at least one of the patterned metallization layers comprises a plurality of ion-sensitive electrodes (34), each ion-sensitive electrode being electrically connected to at least one of said circuit elements, a plurality of sample volumes (50) extending into said metallization stack, each sample volume terminating at one of said ion-sensitive electrodes; and an ion-sensitive layer lining at least the ion-sensitive electrodes in said sample volumes. A method of manufacturing such an IC is also disclosed.
Abstract:
Disclosed is an integrated circuit comprising a substrate (10) including semiconductor devices and a metallization stack (20) over said substrate for interconnecting said devices, the metallization stack comprising a cavity (36), and a thermal conductivity sensor comprising at least one conductive portion (16, 18) of said metallization stack suspended in said cavity. A method of manufacturing such an IC is also disclosed.
Abstract:
Disclosed is an integrated circuit comprising a substrate (10) carrying a plurality of circuit elements; a metallization stack (12,14,16) interconnecting said circuit elements, said metallization stack comprising a patterned upper metallization layer comprising a first metal portion (20) and a second metal portion (21); a passivation stack (24,26,28) covering the metallization stack; a gas sensor including a sensing material portion (32,74) on the passivation stack; a first conductive portion (38) extending through the passivation stack connecting a first region of the sensing material portion to the first metal portion; and a second conductive portion (40) extending through the passivation stack connecting a second region of the sensing material portion to the second metal portion. A method of manufacturing such an IC is also disclosed. The gas sensor measures the gas concentration either by measuring the resistivity of the sensing material as the test gas is absorbed in the sensing material or by measuring the temperature change of the sensing material due to changes of thermal conductivity of the test gas.