Abstract:
This invention provides methods and compositions for preventing, treating or ameliorating one or more symptoms of a malignant tumor associated with KRAS mutation in a mammal in need thereof, by identifying a tumor cell in the mammal, the tumor cell comprising at least one of: (i) a mutation of the KRAS gene, and (ii) an aberrant expression level of KRAS protein; and administering to the mammal a therapeutically effective amount of a composition comprising one or more RNAi molecules that are active in reducing expression of GST-π.
Abstract:
What is described is a method for treating a fibrotic disease by administering a pharmaceutical composition comprising a drug carrier, which comprises a lipid and a retinoid, and a double-stranded nucleic acid molecule, which comprises an antisense sequence to mRNA encoding human hsp47.
Abstract:
This invention provides compositions and methods for preventing or treating a malignant tumor in a mammal in need thereof, by administering to the mammal a therapeutically effective amount of a composition comprising RNAi molecules, which RNAi molecules can be active in reducing expression of Hsp47, or a combination of RNAi molecules active for Hsp47 and p21.
Abstract:
This invention provides compounds, compositions and methods for modulating the expression of human p21 using RNA interference. The RNA interference molecules can be used in methods for preventing or treating diseases such as malignant tumor. Provided are a range of siRNA structures, having one or more nucleotides being modified or chemically-modified. Advantageous structures include siRNAs with 2′-deoxy nucleotides located in the seed region, as well as other nucleotide modifications.
Abstract:
This invention provides compounds, compositions and methods for modulating the expression of human GST-π using RNA interference. The RNA interference molecules can be used in methods for preventing or treating diseases such as malignant tumor. A nucleic acid molecule can have a) a polynucleotide sense strand and a polynucleotide antisense strand; b) each strand of the molecule being from 15 to 30 nucleotides in length; c) a contiguous region of from 15 to 30 nucleotides of the antisense strand being complementary to a sequence of an mRNA encoding GST-π; and d) at least a portion of the sense strand can be complementary to at least a portion of the antisense strand, and the molecule has a duplex region of from 15 to 30 nucleotides in length.
Abstract:
This invention provides compounds, compositions and methods for modulating the expression of target genes using RNA interference. RNAi structures and molecules of this invention can be used for modulating or silencing the expression of genes, with high levels of RNAi activity and reduced off target actions. Advantageous structures include siRNAs targeted to any gene having one or more 2′-deoxy nucleotides located in the seed region. The RNA interference molecules can be used in methods for preventing or treating diseases.
Abstract:
This invention provides compounds, compositions and methods for modulating the expression of target genes using RNA interference. RNAi structures and molecules of this invention can be used for modulating or silencing the expression of genes, with high levels of RNAi activity and reduced off target actions. Advantageous structures include siRNAs targeted to any gene having one or more 2′-deoxy nucleotides located in the seed region. The RNA interference molecules can be used in methods for preventing or treating diseases.
Abstract:
This invention includes fusogenic compounds, and compositions and methods of use thereof. The fusogenic compounds can be used for making nanoparticle compositions for use in biopharmaceuticals and therapeutics. More particularly, this invention relates to compounds, compositions and methods for providing nanoparticles to incorporate or encapsulate active agents, to deliver and distribute the active agents to cells, tissues, organs, and subjects.
Abstract:
This invention includes fusogenic compounds, and compositions and methods of use thereof. The fusogenic compounds can be used for making nanoparticle compositions for use in biopharmaceuticals and therapeutics. More particularly, this invention relates to compounds, compositions and methods for providing nanoparticles to incorporate or encapsulate active agents, to deliver and distribute the active agents to cells, tissues, organs, and subjects.