METHODS AND APPARATUS FOR TAGGING CLASSES USING SUPERVISED LEARNING
    31.
    发明申请
    METHODS AND APPARATUS FOR TAGGING CLASSES USING SUPERVISED LEARNING 审中-公开
    使用监督学习标签类的方法和装置

    公开(公告)号:WO2015065686A3

    公开(公告)日:2015-06-25

    申请号:PCT/US2014060234

    申请日:2014-10-13

    Applicant: QUALCOMM INC

    CPC classification number: G06N3/049 G06N3/0454 G06N3/08

    Abstract: Certain aspects of the present disclosure provide methods and apparatus for creating tags (static or dynamic) for input/output classes of a neural network model using supervised learning. The method includes augmenting a neural network model with a plurality of neurons and training the augmented network using spike timing dependent plasticity (STDP) to determine one or more tags.

    Abstract translation: 本公开的某些方面提供了使用监督学习为神经网络模型的输入/输出类创建标签(静态或动态)的方法和装置。 该方法包括用多个神经元增强神经网络模型,并使用尖峰定时相关可塑性(STDP)训练增强网络来确定一个或多个标签。

    TECHNIQUES FOR ENHANCED BACKHAUL FLOW CONTROL
    32.
    发明申请
    TECHNIQUES FOR ENHANCED BACKHAUL FLOW CONTROL 审中-公开
    增强回流流量控制技术

    公开(公告)号:WO2009137650A8

    公开(公告)日:2010-12-02

    申请号:PCT/US2009043095

    申请日:2009-05-07

    CPC classification number: H04W28/14 H04L47/10 H04L47/14 H04L47/26 H04L47/30

    Abstract: Techniques for enhanced backhaul flow control are provided. In an exemplary embodiment, a backhaul control system is described that comprises a base station controller (BSC), a backhaul network, and a base transceiver station (BTS). Each is responsive to data and messaging transmitted and received. In one aspect, the BTS includes a queue and a controller. The amount of data in a queue is adjusted by a controller based upon calculating a target queue size value. The controller non-uniformly adjusts the amount of data in a queue based upon a target queue size value which is based upon communication system parameters. The target queue size and amount of data in a queue is adjusted so as to reduce buffer underrun, decrease system latency, and increase communication system throughput.

    Abstract translation: 提供了用于增强回程流量控制的技术。 在示例性实施例中,描述了一种回程控制系统,其包括基站控制器(BSC),回程网络和基站收发器(BTS)。 每个都响应于发送和接收的数据和消息。 在一个方面,BTS包括队列和控制器。 基于计算目标队列大小值,控制器调整队列中的数据量。 控制器基于基于通信系统参数的目标队列大小值,不均匀地调整队列中的数据量。 调整目标队列大小和队列数据量,以减少缓冲区欠载,减少系统延迟并提高通信系统吞吐量。

    NEURONAL DIVERSITY IN SPIKING NEURAL NETWORKS AND PATTERN CLASSIFICATION
    35.
    发明申请
    NEURONAL DIVERSITY IN SPIKING NEURAL NETWORKS AND PATTERN CLASSIFICATION 审中-公开
    在神经网络和模式分类中的神经元多样性

    公开(公告)号:WO2015088774A2

    公开(公告)日:2015-06-18

    申请号:PCT/US2014067343

    申请日:2014-11-25

    Applicant: QUALCOMM INC

    CPC classification number: G06N3/08 G06N3/049

    Abstract: A method for pattern recognition in a spiking neural network robust to initial network conditions includes creating a set of diverse neurons in a first layer to increase a diversity in a set of spike timings. An input corresponding to a pattern plus noise is presented at an input layer and represented as spikes. The spikes are received at the first layer and spikes are produced at the first layer based on the received spikes. The method also includes updating a weight of each synapse between an input layer neuron and an output layer neuron based on a spike timing difference between a spike at the input layer neuron and a spike at the output layer neuron. Further, the method includes classifying a spike pattern represented by a set of inter-spike intervals, regardless of noise in the spike pattern.

    Abstract translation: 在对初始网络条件稳健的加标神经网络中的模式识别的方法包括在第一层中创建一组不同的神经元以增加一组尖峰定时的分集。 对应于图案加噪声的输入在输入层处呈现并表示为尖峰。 尖峰在第一层被接收,并且基于接收的尖峰在第一层产生尖峰。 该方法还包括基于输入层神经元的尖峰与输出层神经元的尖峰之间的尖峰定时差来更新输入层神经元和输出层神经元之间的每个突触的权重。 此外,该方法包括分类由一组间穗间隔表示的尖峰图案,而不管尖峰图案中的噪声如何。

Patent Agency Ranking