IMPLEMENTING SYNAPTIC LEARNING USING REPLAY IN SPIKING NEURAL NETWORKS

    公开(公告)号:CA2926824A1

    公开(公告)日:2015-05-14

    申请号:CA2926824

    申请日:2014-11-04

    Applicant: QUALCOMM INC

    Abstract: Aspects of the present disclosure relate to methods and apparatus for training an artificial nervous system. According to certain aspects, timing of spikes of an artificial neuron during a training iteration are recorded, the spikes of the artificial neuron are replayed according to the recorded timing, during a subsequent training iteration, and parameters associated with the artificial neuron are updated based, at least in part, on the subsequent training iteration.

    IMPLEMENTING A NEURAL-NETWORK PROCESSOR
    5.
    发明申请
    IMPLEMENTING A NEURAL-NETWORK PROCESSOR 审中-公开
    实现一个神经网络处理器

    公开(公告)号:WO2015142503A3

    公开(公告)日:2015-12-23

    申请号:PCT/US2015018264

    申请日:2015-03-02

    Applicant: QUALCOMM INC

    CPC classification number: G06N3/08 G06N3/049 G06N3/063

    Abstract: Certain aspects of the present disclosure support a method and apparatus for implementing kortex neural network processor within an artificial nervous system. According to certain aspects, a plurality of spike events can be generated by a plurality of neuron unit processors of the artificial nervous system, and the spike events can be sent from a subset of the neuron unit processors to another subset of the neuron unit processors via a plurality of synaptic connection processors of the artificial nervous system.

    Abstract translation: 本公开的某些方面支持用于在人造神经系统内实现皮质神经网络处理器的方法和设备。 根据某些方面,多个尖峰事件可以由人造神经系统的多个神经元单元处理器产生,并且尖峰事件可以经由神经元单元处理器的子集经由神经元单元处理器的子集经由 人造神经系统的多个突触连接处理器。

    METHOD AND APPARATUS FOR EFFICIENT IMPLEMENTATION OF COMMON NEURON MODELS
    7.
    发明申请
    METHOD AND APPARATUS FOR EFFICIENT IMPLEMENTATION OF COMMON NEURON MODELS 审中-公开
    方法和设备有效实施普通神经元模型

    公开(公告)号:WO2015130476A3

    公开(公告)日:2015-10-22

    申请号:PCT/US2015015637

    申请日:2015-02-12

    Applicant: QUALCOMM INC

    CPC classification number: G06N3/04 G06N3/0454 G06N3/08 G06N3/10

    Abstract: Certain aspects of the present disclosure support efficient implementation of common neuron models. In an aspect, a first memory layout can be allocated for parameters and state variables of instances of a first neuron model, and a second memory layout different from the first memory layout can be allocated for parameters and state variables of instances of a second neuron model having a different complexity than the first neuron model.

    Abstract translation: 本公开的某些方面支持有效实施普通神经元模型。 在一方面,可以为第一神经元模型的实例的参数和状态变量分配第一存储器布局,并且可以为与第一存储器布局不同的第二存储器布局分配用于第二神经元模型的实例的参数和状态变量 具有与第一神经元模型不同的复杂性。

    METHODS AND APPARATUS FOR IMPLEMENTATION OF GROUP TAGS FOR NEURAL MODELS
    8.
    发明申请
    METHODS AND APPARATUS FOR IMPLEMENTATION OF GROUP TAGS FOR NEURAL MODELS 审中-公开
    用于实施神经模型组群标签的方法和装置

    公开(公告)号:WO2015047589A3

    公开(公告)日:2015-05-21

    申请号:PCT/US2014051469

    申请日:2014-08-18

    Applicant: QUALCOMM INC

    CPC classification number: G06N3/049 G06N3/0454

    Abstract: Certain aspects of the present disclosure support assigning neurons and/or synapses to group tags where group tags have an associated set of parameters. By using group tags, neurons or synapses in a population can be assigned a group tag. Then, by changing a parameter associated with the group tag, all synapses or neurons in the group may have that parameter changed.

    Abstract translation: 本公开的某些方面支持将神经元和/或突触分配给组标签,其中组标签具有相关联的一组参数。 通过使用组标签,群体中的神经元或突触可以被分配一个组标签。 然后,通过改变与组标签相关的参数,组中的所有突触或神经元可以改变该参数。

    EFFICIENT HARDWARE IMPLEMENTATION OF SPIKING NETWORKS
    9.
    发明申请
    EFFICIENT HARDWARE IMPLEMENTATION OF SPIKING NETWORKS 审中-公开
    SPI网络的有效硬件实现

    公开(公告)号:WO2014189970A3

    公开(公告)日:2015-04-09

    申请号:PCT/US2014038841

    申请日:2014-05-20

    Applicant: QUALCOMM INC

    CPC classification number: G06N3/063 G06N3/049 G06N3/08

    Abstract: Certain aspects of the present disclosure support operating simultaneously multiple super neuron processing units in an artificial nervous system, wherein a plurality of artificial neurons is assigned to each super neuron processing unit. The super neuron processing units can be interfaced with a memory for storing and loading synaptic weights and plasticity parameters of the artificial nervous system, wherein organization of the memory allows contiguous memory access.

    Abstract translation: 本公开的某些方面支持在人造神经系统中同时操作多个超级神经元处理单元,其中将多个人造神经元分配给每个超级神经元处理单元。 超神经元处理单元可以与用于存储和加载人造神经系统的突触权重和可塑性参数的存储器连接,其中存储器的组织允许连续的存储器访问。

    MODULATING PLASTICITY BY GLOBAL SCALAR VALUES IN A SPIKING NEURAL NETWORK
    10.
    发明申请
    MODULATING PLASTICITY BY GLOBAL SCALAR VALUES IN A SPIKING NEURAL NETWORK 审中-公开
    通过全球标量值在SPIKING神经网络中调节塑性

    公开(公告)号:WO2015156989A3

    公开(公告)日:2015-12-03

    申请号:PCT/US2015022024

    申请日:2015-03-23

    Applicant: QUALCOMM INC

    CPC classification number: G06N99/005 G06N3/049

    Abstract: A method for maintaining a state variable in a synapse of a neural network includes maintaining a state variable in an axon. The state variable in the axon may be updated based on an occurrence of a first predetermined event. The method also includes updating the state variable in the synapse based on the state variable in the axon and an occurrence of a second predetermined event.

    Abstract translation: 维持神经网络突触状态变量的方法包括维持轴突中的状态变量。 可以基于第一预定事件的发生来更新轴突中的状态变量。 该方法还包括基于轴突中的状态变量和第二预定事件的发生来更新突触中的状态变量。

Patent Agency Ranking