Abstract:
Un aparato (500A) para comunicaciones inalámbricas, que comprende: un sistema de procesamiento configurado para obtener (502 A) al menos un parámetro relacionado con el aplazamiento desde un paquete transmitido en un medio de acceso compartido y decidir si diferir la transmisión (504A) en el medio de acceso compartido basándose, al menos en parte, en el al menos un parámetro relacionado con el aplazamiento, en el que el sistema de procesamiento está configurado para diferir la transmisión en el medio de acceso compartido durante la transmisión de paquetes de un conjunto de servicios básicos, BSS, del cual el aparato es miembro y no diferir la transmisión en el medio de acceso compartido durante la transmisión de paquetes de uno o más conjuntos de servicios básicos superpuestos, OBSS, en una lista de OBSS, y en el que el aparato está configurado para recibir dicha lista de OBSS.
Abstract:
Los aspectos de la presente invención proporcionan técnicas y aparatos para el aplazamiento basado en información de identificación de conjunto de servicios. De acuerdo con ciertos aspectos, se proporciona un método para comunicaciones inalámbricas. El método incluye generalmente recibir, en un medio de acceso compartido, un paquete que tiene al menos un parámetro relacionado con el aplazamiento y decidir si retrasar la transmisión en el medio de acceso compartido con base, al menos en parte, en el parámetro relacionado con el aplazamiento. Otro método puede generalmente incluir generar un paquete que comprende al menos un parámetro relacionado con el aplazamiento para ser utilizado por otro aparato para decidir si o no el otro aparato debe aplazar la transmisión en un medio de acceso compartido y proporcionar el paquete al otro aparato.
Abstract:
Aspects of the present disclosure provide techniques and apparatus for deferral based on basic service set identification (BSSID) information. According to certain aspects, a method for wireless communications is provided. The method generally includes receiving, on a shared access medium, a packet having at least one deferral-related parameter and deciding whether to defer transmission on the shared access medium based, at least in part, on the deferral-related parameter. Another method may generally include generating a packet comprising at least one deferral-related parameter to be used by another apparatus for deciding whether or not the other apparatus should defer transmitting on a shared access medium and providing the packet to the other apparatus.
Abstract:
Dynamic channel reuse in multi access communication systems (e.g.powerline systems using CSMA protocol). A first station (e.g. a master or central controller) in a communication network may receive a transmission (e.g. statistics on RSSI or SNR of received signals) over a communication medium. The first station (i.e. master or central controller) may generate a reuse determination (i.e. a determination to reuse a channel) based on information from the received transmission (i.e. based on the RSSI or SNR statistics collected or received). The reuse determination may be usable with at least one other reuse determination to coordinate reuse of the communication medium (e.g. two reuse determinations from different networks may be used to coordinated the channel reuse through neighbour networks).
Abstract:
A waveform communicated from a first station to a second station over the shared medium may be communicated at a time that is based on a shared time reference shared by the first and second stations. The waveform may include at least a first symbol, having a predetermined symbol length, comprising a first set of frequency components at predetermined carrier frequencies modulated with preamble information and a second set of frequency components at predetermined carrier frequencies modulated with frame control information. The carrier frequencies of the first and second sets of frequency components may be integral multiples of a frequency interval determined by the inverse of the symbol length. The first symbol of the waveform may be demodulated in response to detecting a series of values sampled based on the shared time reference.
Abstract:
A slotted message access protocol can be implemented for transmitting messages in a communication network. A beacon period may be divided into multiple communication slots. A master network device may register a first client network device and provide registration information to the first client network device. The registration information may include one or more encryption keys to allow the first client network device to securely transmit messages in the communication network. The client network device may use an encryption key associated with a second client network device to decrypt messages received from the second client network device. Furthermore, the first client network device may use a contention-based communication slot to request allocation of contention-free communication slots for subsequent transmissions. The master network device may temporarily allocate contention-free communication slots to the client network device for a specified duration.
Abstract:
A waveform communicated from a first station to a second station over the shared medium may be communicated at a time that is based on a shared time reference shared by the first and second stations. The waveform may include at least a first symbol, having a predetermined symbol length, comprising a first set of frequency components at predetermined carrier frequencies modulated with preamble information and a second set of frequency components at predetermined carrier frequencies modulated with frame control information. The carrier frequencies of the first and second sets of frequency components may be integral multiples of a frequency interval determined by the inverse of the symbol length. The first symbol of the waveform may be demodulated in response to detecting a series of values sampled based on the shared time reference.
Abstract:
A slotted message access protocol can be implemented for transmitting messages in a communication network. A beacon period may be divided into multiple communication slots. A master network device may register a first client network device and provide registration information to the first client network device. The registration information may include one or more encryption keys to allow the first client network device to securely transmit messages in the communication network. The client network device may use an encryption key associated with a second client network device to decrypt messages received from the second client network device. Furthermore, the first client network device may use a contention-based communication slot to request allocation of contention-free communication slots for subsequent transmissions. The master network device may temporarily allocate contention-free communication slots to the client network device for a specified duration.