Abstract:
Techniques for intra- and inter-operator coordination on a shared communication medium are disclosed. A central coordination server may send an operating mode information message to coordinate operation of different points on the communication medium. An access point may receive such an operating mode information message and adjust one or more communication parameters. An access point may determine a level of timing synchronization with neighboring access points and send a synchronization advertisement message to an access terminal. An access terminal may receive a synchronization advertisement message and perform one or more measurements of the neighboring access points.
Abstract:
Techniques for managing re-contention on a shared communication medium are disclosed. In order to facilitate re-contending for access to the communication medium, an access point may adjust one or more uplink transmission parameters associated with a triggering condition for invoking a contention timer. In addition or as an alternative, the access point may mute transmission on the communication medium during one or more symbol periods designated for transmission. In addition or as an alternative, the access point may configure a timing advance to create a re-contention gap.
Abstract:
Techniques for managing re-contention on a shared communication medium are disclosed. In order to facilitate re-contending for access to the communication medium, an access point may adjust one or more uplink transmission parameters associated with a triggering condition for invoking a contention timer. In addition or as an alternative, the access point may mute transmission on the communication medium during one or more symbol periods designated for transmission. In addition or as an alternative, the access point may configure a timing advance to create a re-contention gap.
Abstract:
Techniques for managing contention on a shared communication medium are disclosed. Various techniques are provided to facilitate aspects such as reference signaling, downlink medium access, uplink medium access, resource reuse, channel structures, acknowledgment schemes, fairness, acquisition, random access, paging, mobility, inter-operator mitigation, and so on for a frame structure implemented on the shared communication medium.
Abstract:
The present disclosure presents aspects for managing performance of a wireless network. For example, the aspects may include identifying a backhaul condition at a small cell in the wireless network wherein the backhaul condition is associated with one or more of a backhaul latency measurement, a backhaul error rate, or a backhaul jitter value at the small cell and triggering an action at the small cell in response to identifying the backhaul condition at the small cell, wherein triggering the action at the small cell includes modifying one or more resource management parameters at the small cell based on the backhaul condition. As such, performance of a wireless network may be managed.
Abstract:
Apparatus and methods of wireless communications are described for determining one or more bands (e.g., guard bands in wireless local area networks (WLANs)) in unused portions of an unlicensed spectrum, positioning one or more carriers for cellular communication (e.g., long term evolution (LTE) or LTE advanced communication) in the one or more bands, and performing the cellular communication over the unlicensed spectrum using the one or more carriers. In some non-limiting example aspects, the cellular communication may be in a standalone mode and the one or more carriers may include a primary component carrier (PCC) that is positioned in a Wi-Fi guard band. In these non-limiting example aspects, the apparatus and methods may further include allocating one or more secondary component carriers (SCCs) in Wi- Fi guard bands or in Wi-Fi channels, where the one or more SCCs are opportunistically tuned or turned ON/OFF based on cell loading or backhaul constraints.
Abstract:
The present disclosure presents a method and an apparatus for passive estimation mechanism for backhaul management at a small cell base station. For example, the method may include determining, at the small cell base station, whether a time slot utilization of a flow at a user equipment (UE) in communication with the small cell base station is above a first threshold, wherein a plurality of time slots are associated with the flow, determining whether an average throughput of the flow is below a second threshold in response to determining that the time slot utilization is above the first threshold, and identifying that the flow is not satisfied in response to determining that the average throughput of the flow is below the second threshold. As such, passive estimation mechanism for backhaul management at a small cell base station may be achieved.
Abstract:
A neighbor cell list for a cell is maintained based on a received handover message that identifies at least one physical layer identifier. For example, the handover message may include measurement report messages (MRMs) generated by the access terminal being handed over. As another example, the handover message may include a neighbor cell list that is associated with the access terminal. The measurement report messages and the neighbor cell list associated with the access terminal will identify physical layer identifiers of cells in the vicinity of the source cell and, in some cases, in the vicinity of the access terminal being handed over. Upon receipt of the handover message, the neighbor cell list for the target cell is updated based on the physical layer identifiers identified by the handover message.
Abstract:
Methods and apparatuses are provided for causing active hand-in of a device from a macrocell base station to a femto node, which can be an inter-frequency hand-in. The femto node can broadcast a beacon, which can be received and reported by a device to a source base station along with one or more parameters for disambiguating a target femto node. The source base station can communicate a handover message to the femto node or a related femto gateway along with the one or more parameters. The femto node or femto gateway can disambiguate the intended target femto node based in part on the one or more parameters, which can include applying one or more filters. Additionally, the femto node can broadcast multiple beacons to assist in disambiguation of the target femto node. Also, where complete disambiguation is not possible, the femto gateway can prepare multiple femto nodes for hand-in.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station may transmit, and a user equipment (UE) may receive, a bitmap that includes a bit sequence to indicate a synchronization signal block (SSB) transmission pattern. The UE may perform rate matching around one or more candidate SSB positions in an initial portion of a window in which SSB transmission is expected, based at least in part on the bitmap, a first parameter indicating a quantity of initial candidate SSB positions in the window subject to rate matching, and a second parameter indicating a quantity of initial bits in the bit sequence that define the SSB transmission pattern. Numerous other aspects are provided.