Abstract:
Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, to Wi-Fi systems including frame extensions in transmission frames. Lengths of frame extensions may be determined based on transmission bandwidths and transmission data rates of the frames. Lengths of frame extensions may also be determined based on an amount of useful data in a final symbol of the frame. An access point (AP) may determine frame extension lengths for use in transmitting to stations (STAs) based on reception capabilities of the STAs. An AP may determine frame extension lengths for STAs to use in transmitting frames.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, an apparatus may be configured to determining a TWT schedule. The apparatus may be configured to broadcast a message that includes the TWT schedule to a number of wireless devices. The message may includ a broadcast indicator that indicates the TWT schedule is a broadcast TWT schedule. In another aspect, an apparatus may be configured to receive from a second wireless device a message that includes a TWT schedule. The message may include a broadcast indicator that indicates the TWT schedule is a broadcast TWT schedule. The apparatus may be configured to determine one or more TWTs for the apparatus based on the TWT schedule.
Abstract:
A method of wirelessly communicating a packet can include generating, at a wireless device, a packet including a training field based on a training field tone plan. The method further includes populating training tones in the training field tone plan by duplicating tone positions from a base training field one or more times, and adding one or more additional sub-band direct current (DC) tones or edge tones. The method further includes transmitting the packet.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, an apparatus is configured determine a number of symbols in a data field. The apparatus is configured to distribute a first number of data bits to each encoder in a subset of encoders in a set of encoders based on the determined number of symbols. The apparatus is configured to distribute a second number of data bits to a last encoder in the set of encoders based on the determined number of symbols. The apparatus is configured to transmit data to a second wireless device. The data is encoded based on the distributed first and second number of data bits.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, the apparatus is configured to determine a number of data symbols for transmitting a data payload. The apparatus is configured to determine a number of payload bits for transmitting the data payload based on the determined number of data symbols. The apparatus is configured to transmit a data frame. The data frame includes a signal field and data symbols encoded based on the data payload, the determined number of data symbols, and the determined number of payload bits, in which the data symbols are encoded using LDPC encoding or BCC encoding.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In one aspect, an apparatus includes a processor configured to allocate a plurality of resource blocks for wireless communication. The processor is further configured to transmit data on a first resource block of the plurality of resource blocks, in which the first resource block is associated with a first set of tone indices and a second set of tone indices, and the first set of tone indices is a set of nominal tone indices that is logically mapped to a second set of tone indices that is a set of physical tone indices.
Abstract:
Methods and apparatuses for providing wireless messages according to various tone plans can include a system configured to generate a message according to a 2048-tone plan having 1960 data tones. The 2048-tone plan includes two identical 1024-tone plans each having 980 data tones. The system can further perform segment parsing to divide data into two data portions, each portion for transmission over one of two 80 MHz bandwidths, according to one of the two identical 1024-tone plans. The system can further perform low density parity check (LDPC) tone mapping separately on each of the two data portions. The system can further provide the message for transmission over a 160 MHz bandwidth including the two 80 MHz bandwidths.
Abstract:
Methods and apparatus for multiple user uplink are provided. In one aspect, a method includes generating, at an access point, an aggregated message. The aggregated message includes a single-user broadcast message and at least one other message. The method further includes transmitting the aggregated message to one or more stations.
Abstract:
Methods and techniques for interleaving orthogonal frequency division multiple access (OFDMA) data are disclosed. An apparatus includes an interleaver configured to interleave encoded data for at least one of a 72, 120, or 312 data tone allocation. The interleaver is further configured to generate a series of interleaved bits, for transmission based on the interleaved encoded data. The interleaver includes one or more stream interleavers corresponding to one or more spatial streams. The one or more stream interleavers are further configured to interleave the encoded data and generate the series of interleaved bits. The apparatus further includes a transmission circuit configured to transmit the series of interleaved bits via the one or more spatial streams.
Abstract:
Methods and apparatus methods and apparatus for providing wireless messages according to various tone plans. One aspect of the disclosure provides an apparatus including a processing system. The processing system is configured to select from one of a 256-, 512-, 1024-, and 2048-tone plan for wireless communication of a message. The processing system is further configured to, upon selecting the 256-tone plan, provide the message for transmission over a 20 MHz bandwidth. The processing system is further configured to, upon selecting the 512-tone plan, provide the message for transmission over a 40 MHz bandwidth. The processing system is further configured to, upon selecting the 1024-tone plan, provide the message for transmission over a 80 MHz bandwidth. The processing system is further configured to, upon selecting the 2048-tone plan, provide the message for transmission over a 160 MHz bandwidth.