Abstract:
A pressure transmitter with first and second absolute pressure sensors receives process pressures from corresponding first and second process inlets. A transmitter circuit coupled to the first and second absolute pressure sensors generates a differential pressure type output. A third absolute pressure sensor coupled to the transmitter circuit receives atmospheric pressure from a third inlet. The transmitter circuit generates a second type of transmitter output that can be a gage or absolute pressure type. Single crystal. sapphire pressure sensors are preferred to provide enough accuracy for measuring accurately over 200:1 pressure range.
Abstract:
A process control transmitter (10) includes a transmitter housing (12) and transmitter circuitry (20) adapted for providing a transmitter output related to a sensed pressure. A sensor coupling (42) in the housing (12) defines a pressure sensor cavity which is filled with isolation fluid. An isolation diaphragm (46) separates the sensor cavity from a process fluid and is adapted to transmit pressure therebetween. The pressure sensor (16) is mounted in the sensor cavity and provides an output related to pressure to the transmitter circuitry (20). A thermal compensation member (44) is coupled to the sensor cavity and has a thermal expansion coefficient which is different than a thermal expansion coefficient for the sensor coupling (42). The compensation member (44) is adapted to compensate for pressure changes due to thermal expansion of the components or isolation fluid.
Abstract:
In this invention, a first sensor senses an organic gas, liquid or vapor and includes a first support having a first support surface with a layer of material fastened to it. In the presence of liquid, gas or vapor, the material swells and expands so as to vary at least one of its dimensions. Such expansion develops a stress at an interface between the first support surface and the material, and strain sensitive resistors detect the stress and produce an output which varies as a function of the stress at the interface. One of a pair of piezoresistors is located where there is increased stress and the other piezoresistor is disposed where there is reduced stress. If desired, a second sensor similar in structure to the first but exposed only to a reference organic liquid, gas or vapor temperature compensates the first. In another embodiment of the invention, an organic chemical responsive sensor includes a first support having a first support surface and a first capacitor plate fastened to the first support. A second support coupled to the first support spaces a second capacitor plate a distance away from the first plate. A material which expands in the presence of organic liquid, gas or vapor is applied to the first support surface so that upon expansion, the first support deflects and changes the distance between the two capacitor plates, thereby changing an electrical capacity between the plates. Another sensor of similar structure may optionally temperature compensate the first.
Abstract:
A thin film platinum resistance thermometer capable of operation at elevated temperatures includes a benign dielectric layer covering the thin film platinum resistance temperature sensing element and a barrier layer overlying the dielectric layer. The barrier layer, which is preferrably titanium dioxide, resists diffusion of contaminants which would alter the electrical characteristics of the sensing element, while permitting diffusion of oxygen through the barrier layer.
Abstract:
A capacitive pressure sensor is formed with sensor body and diaphragm components made of near net shapeable sintered ceramic. In one configuration, the differential pressure sensor has two sintered ceramic cell halves with an internal sintered ceramic diaphragm captured between the two cell halves. In another configuration, two side-by-side sintered ceramic cell halves have individual sintered ceramic diaphragms, and the chambers of the two cell halves are connected by metal tubing.
Abstract:
A polymeric remote seal system is provided for coupling a single-use container (110) to a pressure measurement instrument (104). The polymeric remote seal system includes a process-side coupling (116), an instrument-side coupling (118) and a fluidic coupling (106) therebetween. The process-side coupling (116) is configured to couple to the single-use container (110) and is formed of a radiation sterilizable polymer. The process-side coupling (116) has a process-side deflectable diaphragm (256; 234) that is configured to deflect in response to pressure within the single-use container (110). The instrument-side coupling (118) is configured to couple to the pressure measurement instrument (104) and is formed of a radiation sterilizable polymer. The instrument-side coupling (118) is configured to fluidically convey fluid pressure to an isolation diaphragm of the pressure measurement instrument. Tubing (106) fluidically couples the process-side coupling (116) to the instrument-side coupling (118).