Abstract:
A method of forming a carbon nanotube emitter includes: forming a carbon nanotube composite on a substrate with a predetermined shape, coating surface treating material in a liquid phase on the carbon nanotube composite and drying the surface treating material, and peeling the dried surface treating material off of the carbon nanotube composite.
Abstract:
An electron emission source including a carbon-based material coated with metal carbide in the surface coating layer, of which the metal has a negative Gibbs free energy when forming the metal carbide at 1,500 K or lower, a method of preparing electron emission sources, and an electron emission device including the electron emission source. The electron emission source includes a carbon nanotube coated with metal carbide or a carbon nanotube having a metal carbide layer and a metal coating layer, which are sequentially formed thereon. Thus, the electron emission source has long lifespan without deterioration of electron emitting characteristics. The electron emission source can be used to manufacture electron emission devices with improved reliability.
Abstract:
In a liquid crystal display, a plurality of gate lines and data lines are provided on a first substrate including a display area as a screen, and a peripheral area external to the display area wherein a plurality of pixel electrodes are electrically connected to the gate lines and to the data lines, and some of the pixel electrodes extend to be located in the peripheral area; and optionally, a black matrix is formed on a second substrate disposed opposite to the first substrate for screening the extended portions of the pixel electrodes located in the peripheral area, a rubbing direction of aligning films is formed on the first and the second substrates towards the extended portions of the pixel electrodes located in the peripheral area so that impurity ions on the surface of the aligning film travel along the rubbing direction to stop at the extended portions of the pixel electrode, and an image defect area caused by the impurity ions is screened with the black matrix.
Abstract:
A carbon-based composite particle for an electron emission source comprises a particle of a material selected from the group consisting of metals, oxides, and ceramic materials; and a carbon-based material such as a carbon nanotube which is partially embedded inside the particle and which partially protrudes from the surface of the particle.
Abstract:
Disclosed is a carbon-based composite particle for an electron emission source comprising: a particle of a material selected from the group consisting of metals, oxides, and ceramic materials; and a carbon-based material such as a carbon nanotube which is partially buried inside of the particle and which partially protrudes from the surface of the particle.
Abstract:
An electron emission device that is driven at a low voltage has lower power consumption, and can be mass-produced. An electron emission display device includes the electron emission device, The electron emission device includes: a base substrate; a cathode electrode disposed on the base substrate; an electron emission source disposed on the cathode electrode; a data electrode disposed above the electron emission source; a scan electrode disposed above the data electrode; and insulating layers insulating each electrode from the other electrodes. A method of driving the electron emission device includes maintaining a voltage at the cathode electrode of below 0 V or a ground level, maintaining a positive voltage at the scan electrode, and maintaining a voltage at the data electrode of below 0 V; and intermittently providing a positive voltage at the data electrode for a predetermined period of time such that electrons can travel toward the scan electrode for the predetermined period of time.
Abstract:
An electron emission source including a carbon-based material and a UV shielding material, a method of preparing the same, and an electron emission device using the electron emission source are provided. The UV shielding material is added to an electron emission source forming composition to more easily control the sharpness of an electron emission source tip. The electron emission source composition may include a carbon-based material, a vehicle including a resin and a solvent, and a UV shielding material.
Abstract:
A power glitch free internal voltage generation circuit includes: a voltage divider for dividing level of an internal voltage; a reference voltage generator generating a reference voltage having a predetermined voltage level by dividing a level of an external voltage; a comparator connected to the external voltage and the internal voltage and comparing the divided internal voltage with the reference voltage to generate a compared output; and a driver for supplying the external voltage to the internal voltage in response to the output of the comparator. In this manner, a high voltage level from either of the external voltage and the internal voltage is used as a source of the comparator. This, in turn, stably maintains the internal voltage because the driver for transferring the external voltage to the internal voltage is intercepted in the case where a glitch occurs that lowers the external voltage to a level lower than the internal voltage.
Abstract:
A nonvolatile semiconductor integrated circuit having a cell array consisting of a plurality of memory strings each having first to N-th (N=2, 3, 4, . . . ) memory cell transistors of a NAND structure includes a plurality of first string select transistors connected in series to the first memory cell transistor, and a plurality of second string select transistors connected in series to the N-th memory cell transistor. One of the string select transistors serially connected to the first and N-th memory cell transistors has a control terminal connected to a ground connecting point, thus to have a ground select function as well as a string select function.
Abstract:
A mask ROM having a defect repairing function stores address signals corresponding to a defective memory cell and then, selectively activates either a redundancy row decoder or a row decoder according to whether the address signals stored are identical to address signals supplied externally. The mask ROM includes first and second memory cell arrays formed by grouping in a word line direction a plurality of read only memory cells arranged in rows and columns; first and second row decoders for combining row address signals supplied externally so as to selectively drive the word lines of the first and second memory cell arrays; and a row decoder selector for storing therein address signals according to a row block including a defective memory cell, of the first memory cell array so as to inactivate the first row decoder and activate the second row decoder when the external row address signals are equal to the address signals stored in the row decoder selector.