Abstract:
Various systems and methods for providing and deploying a power harvesting drone are described herein. A power harvesting drone includes a motor assembly; an energy replenishment coupler; a processor communicatively coupled to the energy replenishment coupler; and a memory storing instructions, which when executed by the processor cause the processor to: operate the power harvesting drone to navigate a predetermined path; determine that a power supply used to operate the power harvesting drone is below a threshold of remaining power; identify an opportunistic energy source; and deviate from the predetermined path to replenish at least a portion of the power supply from the opportunistic energy source using the energy replenishment coupler onboard the power harvesting drone.
Abstract:
An apparatus and method for refueling an aircraft comprising a hose guide. The hose guide includes a framework having wings and remotely-adjustable control surfaces interacting with air through which the hose guide moves. An attachment interface, attaching the hose guide to a fuel hose extended from a tanker aircraft, at a distal end away from the tanker aircraft, and a control system adjusting the adjustable control surfaces. Wherein the hose guide is towed as a glider by the tanker aircraft, and adjustment of the control surfaces adjusts three-dimensional position of the end of the fuel hose at the hose guide relative to position of the tanker aircraft.
Abstract:
A hose is disclosed for conveying fluids. The hose has a wall defining a fluid carrying tube and a power and/or data transmission cable is integrated into said wall. Also disclosed is a user definable module that is removably attachable to the distal end of a fluid conveying hose. The hose being releasably connectable to a fluid receiving entity to provide fluid to said entity. The fluid conveying hose has a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into that wall. The user definable module is connectable to the cable and has components to measure at least one measurable parameter at the end of the hose and/or provide electrical connection between the cable and said fluid receiving entity for the transmission of data and/or power along the hose via said user definable interface. Also disclosed is a method of configuring a hose for fluid transfer. The method includes the step of selecting a user definable module and attaching the selected module to a distal end of the hose prior to connecting said hose to a fluid receiving entity.
Abstract:
A refueling drogue assembly includes a drogue body coupled to a tanker aircraft, and at least one data transmission device coupled to the drogue body. The at least one data transmission device is configured to receive a transmission signal from a partner transmission device coupled to an airborne target aircraft. The transmission signal includes data to be stored. The drogue assembly further includes a data storage device coupled to the tanker aircraft. The data storage device is communicatively coupled to the at least one data transmission device. The data storage device is configured to receive the transmission signal and store the data.
Abstract:
A refueling drogue assembly includes a drogue body coupled to a tanker aircraft, and at least one data transmission device coupled to the drogue body. The at least one data transmission device is configured to receive a transmission signal from a partner transmission device coupled to an airborne target aircraft. The transmission signal includes data to be stored. The drogue assembly further includes a data storage device coupled to the tanker aircraft. The data storage device is communicatively coupled to the at least one data transmission device. The data storage device is configured to receive the transmission signal and store the data.
Abstract:
An automatic-piloting system configured for being set on a receiver aircraft and for controlling operations of in-flight refuelling of said receiver aircraft, comprising: first detection means, set on the receiver aircraft and configured for acquiring first geometrical information associated to a first detection area and a second detection area belonging to a tanker aircraft, the first and second detection areas being linked together by a geometrical relation known to the automatic-piloting system; processing means, configured for determining, on the basis of the first geometrical information acquired, first position information associated to a relative position of the receiver aircraft with respect to the tanker aircraft; and an automatic-pilot device coupled to the processing means and configured for varying flight parameters of the receiver aircraft on the basis of the first position information.
Abstract:
A hose (1) is disclosed for conveying fluids. The hose (1) has a wall defining a fluid carrying tube and a power and/or data transmission cable (9) is integrated into said wall. Also disclosed is a user definable module (11) that is removably attachable to the distal end (3) of a fluid conveying hose (1). The hose is releasably connectable to a fluid receiving entity to provide fluid to said entity. The user definable module (11) is connectable to the cable (9) and has components to measure at least one measurable parameter at the end of the hose and/or provide electrical connection between the cable and said fluid receiving entity for the transmission of data and/or power along the hose via said user definable interface. Also disclosed is a method of configuring a hose for fluid transfer. The method includes the step of selecting a user definable module and attaching the selected module to a distal end of the hose prior to connecting said hose to a fluid receiving entity.
Abstract:
In one example, a long endurance airship system includes a payload airship and a first logistics airship mechanically joined to the payload airship to form a first combined airship, the payload airship and the logistics airship having design capabilities differing by at least a factor of two with regard to at least one of: power generation capability, propulsion capability, endurance capability, and lift capability, in which the first combined airship is free flying, lighter-than-air, and configured to maintain aloft for greater than 30 days without physical connection to the ground. Illustrative methods for long endurance airship operations are also provided.
Abstract:
A hose (1) is disclosed for conveying fluids. The hose (1) has a wall defining a fluid carrying tube and a power and/or data transmission cable (9) is integrated into said wall. Also disclosed is a user definable module (11) that is removably attachable to the distal end (3) of a fluid conveying hose (1). The hose is releasably connectable to a fluid receiving entity to provide fluid to said entity. The user definable module (11) is connectable to the cable (9) and has components to measure at least one measurable parameter at the end of the hose and/or provide electrical connection between the cable and said fluid receiving entity for the transmission of data and/or power along the hose via said user definable interface. Also disclosed is a method of configuring a hose for fluid transfer. The method includes the step of selecting a user definable module and attaching the selected module to a distal end of the hose prior to connecting said hose to a fluid receiving entity.
Abstract:
A motor vehicle system includes a motor vehicle including an aircraft landing portion, and an actively propelled unmanned aircraft configured to be supported on the aircraft landing portion. The vehicle and aircraft are configured such that the vehicle can provide at least one of fuel and electrical energy to the aircraft while the aircraft is supported on the aircraft landing portion.