Abstract:
A system for facilitating automated landing and takeoff of an autonomous or pilot controlled hovering air vehicle with a cooperative underbody at a stationary or mobile landing place and an automated storage system used in conjunction with the landing and takeoff mechanism that stores and services a plurality of UAVs is described. The system is primarily characterized in that the landing mechanism is settable with 6 axes in roll, pitch, yaw, and x, y and z and becomes aligned with and intercepts the air vehicle in flight and decelerates the vehicle with respect to vehicle's inertial limits. The air vehicle and capture mechanism are provided with a transmitter and receiver to coordinate vehicle priority and distance and angles between landing mechanism and air vehicle. The landing and takeoff system has means of tracking the position and orientation of the UAV in real time. The landing mechanism will be substantially aligned to the base of the air vehicle. With small UAVs, their lifting capacity is limited. Reducing sensing and computation requirements by having the landing plate perform the precision adjustments for the landing operation allows for increased flight time and/or payload capacity.
Abstract:
Unmanned aerial vehicles and associated systems and methods are disclosed. A representative unmanned aerial vehicle includes a wearable, flyable support structure, and a propulsion system carried by the support structure. The propulsion system can include a power source and a plurality of propellers. In particular embodiments, the support structure can include a wrist band. A computer- implemented method for operating an unmanned aerial vehicle in a representative embodiment includes detecting at least one parameter of a motion of the UAV as a user releases the UAV for flight. Based at least in part on the at least the one detected parameter, the method can further include establishing a flight path for the UAV, and directing the UAV to fly the flight path.
Abstract:
Methods and apparatus are provided for launching and landing unmanned aerial vehicles (UAVs) including multi-rotor aircrafts. The methods and apparatus disclosed herein utilize positional change of the UAV, visual signal, or other means to effect the launch or landing. The methods and apparatus disclosed herein are user friendly, particularly to amateur UAV users lacking practice of operating a UAV.
Abstract:
An unmanned aerial vehicle (UAV) copter for consumer photography or videography can be launched by a user throwing the UAV copter into mid-air. The UAV copter can detect that the UAV copter has been thrown upward while propeller drivers of the UAV copter are inert. In response to detecting that the UAV copter has been thrown upward, the UAV copter can compute power adjustments for propeller drivers of the UAV copter to have the UAV copter reach a predetermined elevation above an operator device. The UAV copter can then supply power to the propeller drivers in accordance with the computed power adjustments.
Abstract:
An unmanned aerial vehicle system according to the present invention includes a housing (2000) mounted on a vehicle (10) and having an inner space, the housing provided with a launching unit, an unmanned aerial vehicle (1000) accommodated in the housing and configured to be launched from the housing when a driving state of the vehicle meets a preset condition, wing units (1210) mounted to the unmanned aerial vehicle and configured to allow the flight of the unmanned aerial vehicle in response to the launch from the housing, an output unit disposed on the unmanned aerial vehicle, and a controller configured to control the wing units to move the unmanned aerial vehicle to a position set based on information related to the driving state when the unmanned aerial vehicle is launched, and control the output unit to output warning information related to the driving state.
Abstract:
Methods and apparatus are provided for launching and landing unmanned aerial vehicles (UAVs) including multi-rotor aircrafts. The methods and apparatus disclosed herein utilize positional change of the UAV, visual signal, or other means to effect the launch or landing. The methods and apparatus disclosed herein are user friendly, particularly to amateur UAV users lacking practice of operating a UAV.