Abstract:
MEMS switches and methods of manufacturing MEMS switches is provided. The MEMS switch having at least two cantilevered electrodes having ends which overlap and which are structured and operable to contact one another upon an application of a voltage by at least one fixed electrode.
Abstract:
MEMS switches and methods of manufacturing MEMS switches is provided. The MEMS switch having at least two cantilevered electrodes having ends which overlap and which are structured and operable to contact one another upon an application of a voltage by at least one fixed electrode.
Abstract:
The present invention relates to a method for functionalising fluid lines (1b) in a micromechanical device, the walls of which include an opaque layer. For this purpose, the invention provides a method for functionalising a micromechanical device provided with a fluid line including a peripheral wall (5) having a surface (2) outside the line and an inner surface (3) defining a space (1b) in which a fluid can circulate, the peripheral wall at least partially including a silicon layer (5a). The method includes the following steps: a) providing a device, the peripheral wall (5) of which at least partially includes a silicon layer (5a) having, at least locally, a thickness (e) of more than 100 nm and less than 200 nm, advantageously of 160 to 180 nm; c) silanising at least the inner surface of the fluid line; d) the localised, selective photo-deprotection on at least the inner surface of the silanised device by exposing the peripheral wall (5) at the point at which said wall has a thickness (e) of more than 100 nm and less than 200 nm, advantageously of 160 to 180 nm.
Abstract:
A method for producing at least one pattern on a top surface of a support made from a material presenting a first thermal conductivity comprises a step of arranging of a mask made from a material presenting a second thermal conductivity and comprising at least one recess having a shape corresponding to that of the pattern, in contact with a bottom surface of the support, the ratio of the first conductivity over the second conductivity being greater than or equal to 2, or smaller than or equal to ½, throughout the duration of the method. The method further comprises a step of depositing on the top surface a solution comprising a material designed to form the pattern, and a step of evaporating the solution.
Abstract:
A method of forming a nanoscale pattern on a substrate surface. In one embodiment, the method includes the steps of providing a substrate having a surface; providing a nanoscale pattern forming device, comprising an elongated cantilever that has a tip portion proximate an end of the elongated cantilever; and controllably illuminating at least the tip portion of the cantilever with a beam of substantially coherent monoenergetic particles when the cantilever moves relative to the substrate to form a nanoscale pattern on the surface, wherein the tip portion of the cantilever is made from lightly doped silicon.
Abstract:
A method and apparatus for growing nanostructures is presented. A growth substrate including at least one reaction site is provided as is a device disposed proximate the growth substrate. Energy is provided to the reaction site and a reaction species is introduced to the growth substrate. This results in a nanostructure growing from the reaction site wherein the growth process of the nanostructure is controlled by providing a force to the device.
Abstract:
A method for providing a microstructured surface comprising selecting a material having a desired hardness; selecting a microstructure pattern having an arrangement of microfeatures providing a touch aesthetic to be applied to said material, wherein the width and aspect ratio of the microstructures are configured to provide said touch aesthetic for the hardness of the material selected; selecting said microstructure pattern to further include a physical property independent of said touch aesthetic to be applied to said material, wherein at least one of a pitch and spacing of said microfeatures is configured to provide said physical property; determining the dimensions of said microstructure pattern to be applied to the surface of said material to achieve the desired properties; and, applying the microstructure pattern to said material.
Abstract:
A method and apparatus for growing nanostructures is presented. A growth substrate including at least one reaction site is provided as is a device disposed proximate the growth substrate. Energy is provided to the reaction site and a reaction species is introduced to the growth substrate. This results in a nanostructure growing from the reaction site wherein the growth process of the nanostructure is controlled by providing a force to the device.
Abstract:
The invention relates to a method for structuring the surface of a film with microscopic and nanometric structures. The invention is characterised in that a film is used which comprises at least one surface provided with microchannels, said microchannels being communicating, at least in parts, and open on one side towards the film surface; a second film is combined with the film having a structured surface in such a way that the microchannels are covered in a liquid-tight or a gas-tight manner by said second film; and at least one liquid or gaseous medium is guided through the microchannels, said medium removing film material inside the microchannels, by means of chemical interaction, in order to create microstructures and/or nanostructures, and/or producing a coating pattern in the form of microscopic and nanometric structures.
Abstract:
Die Erfindung betrifft ein Herstellungsverfahren für eine mikromechanische Fensterstruktur mit den Schritten: Bereitstellen eines Substrats (1), wobei das Substrat (1) eine Vorderseite (4) und eine Rückseite (5) aufweist; Bilden einer ersten Ausnehmung (6) an der Vorderseite (4); Ausbilden einer Beschichtung (8; 8', 8") auf der Vorderseite (4) und auf der ersten Ausnehmung (6); und Bilden einer zweiten Ausnehmung (7) an der Rückseite (5), so dass die Beschichtung (8) zumindest bereichsweise freigelegt wird, wodurch ein Fenster (F) durch den freigelegten Bereich der Beschichtungen gebildet wird.