Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a stressed region in a selected manner at a selected depth (20) underneath the surface. An energy source such as pressurized fluid is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a stressed region in a selected manner at a selected depth (20) underneath the surface. An energy source such as pressurized fluid is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of forming a weakened region in a selected manner at a selected depth (20) underneath the surface. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) in a selected manner through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth and the particles for a pattern at the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A method for fabricating silicon-on-silicon substrates. A donor wafer (40) is attached to a target wafer (46) using a low-temperature bonding process. The low-temperature bonding process maintains the integrity of a layer of microbubbles (41). Subsequent processing separates a thin film (45) of material from the donor wafer. A high-temperature annealing process finishes the bonding process of the thin film to the target wafer to produce a hybrid wafer suitable for fabricating integrated circuit devices or other devices.
Abstract:
Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Herstellung eines Mehrkomponentenwafers, insbesondere eines MEMS-Wafers. Das erfindungsgemäße Verfahren umfasst dabei mindestens die Schritte: Bereitstellen eines Bondwafers (2), wobei zumindest ein Oberflächenanteil (4) des Bondwafers (2) durch eine Oxidschicht ausgebildet wird, Bereitstellen eines Spenderwafers (6), wobei der Spenderwafer (6) dicker ist als der Bondwafer (2), In Kontakt bringen des Spenderwafers (6) mit dem durch die Oxidschicht gebildeten Oberflächenanteil (4) des Bondwafers (2), Bilden einer Mehrschichtanordnung (8) durch Verbinden des Spenderwafers (6) und des Bondwafers (2) im Bereich des Kontakts, Erzeugen von Modifikationen (18) im Inneren des Spenderwafers (6) zum Vorgeben eines Ablösebereichs (11) zum Trennen der Mehrschichtanordnung (8) in einen Abtrennteil (14) und einen Verbindungsteil (16), wobei die Erzeugung der Modifikationen (18) vor Bildung der Mehrschichtanordnung (8) oder nach der Bildung der Mehrschichtanordnung (8) erfolgt, Trennen der Mehrschichtanordnung entlang dem Ablösebereich infolge einer durch die Erzeugung einer ausreichenden Anzahl an Modifikationen bewirkten Schwächung der Mehrschichtanordnung oder infolge einer Erzeugung von mechanischen Spannungen in der Mehrschichtanordnung, wobei der Verbindungsteil (16) am Bondwafer (2) verbleibt und wobei der abgespaltete Abtrennteil (14) eine größere Dicke aufweist als der Verbindungsteil (16).
Abstract:
Methods of forming semiconductor structures comprising one or more cavities (106), which may be used in the formation of microelectromechanical system (MEMS) transducers, involve forming one or more cavities in a first substrate (100), providing a sacrificial material (110) within the one or more cavities, bonding a second substrate (120) over the a surface of the first substrate, forming one or more apertures (140) through a portion of the first substrate to the sacrificial material, and removing the sacrificial material from within the one or more cavities. Structures and devices are fabricated using such methods.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung einer Halbleiterstruktur mit vergrabenem Hohlraum (64), bei dem ein erstes Halbleitersubstrat (10) mit einer Oberseite (22) bereitgestellt wird und in der Oberseite (22) des ersten Halbleitersubstrats (10) eine Vertiefung ausgebildet wird. Ferner wird ein zweites Halbleitersubstrat (26) mit Kristallgitterebenen und einer Oberseite (28) bereitgestellt, die sich im Wesentlichen parallel zu den Kristallgitterebenen erstreckt, und eine der Kristallgitterebenen, die sich in einem gewünschten Abstand von der Oberseite (28) des zweiten Halbleitersubstrats (26) befindet, zur Erzeugung einer Sollbruchebene mittels Ionenimplantation geschwächt wird. Das zweite Halbleitersubstrat (26) wird mit seiner Oberseite (28) auf der Oberseite (22) des ersten Halbleitersubstrats (10) unter Vakuumbedingungen verbondet, wobei das zweite Halbleitersubstrat (26) zur Bildung eines vergrabenen Hohlraums (60) die Vertiefung (20) in der Oberseite (22) des ersten Halbleitersubstrats (10) überdeckt. Das zweite Halbleitersubstrat wird (26) entlang der Sollbruchebene zum Verbleib einer Membranschicht (34) auf der Oberseite (22) des ersten Halbieitersubstrats (10) gespalten.