Abstract:
Ozone generator cells that include two thermally conductive plates that maintain contact between various layers of the cells in the absence of a bonding agent. The cells lack aluminum-containing materials in the discharge region of the cell.
Abstract:
A current-limiting reactor that regulates a short-circuit current, a controller that controls an action of an inverter, and a detection unit that detects a short circuit. The controller causes the inverter to stop when a short circuit has occurred.
Abstract:
Ozone generator cells that include two thermally conductive plates that maintain contact between various layers of the cells in the absence of a bonding agent. The cells lack aluminum-containing materials in the discharge region of the cell.
Abstract:
Devices for generating and storing ozone. The device includes a tank for containing gas therein; an ozone generator for generating ozone and communicating the ozone with the tank; and at least one valve for admitting gas into the device, holding gas in the device, and discharging gas from the device.
Abstract:
An electric energy conversion/storage system includes an ozone generating means (12) for producing an ozonized gas from a raw material gas containing oxygen by utilizing electric energy, an ozone adsorbing/desorbing means (15) for adsorbing ozone contained in the ozonized gas and desorbing ozone from the adsorbed state, a gas circulation system for causing the raw material gas and the ozonized gas to flow through the ozone generating means (12) and the ozone absorbing/desorbing means (15) while feeding back to the ozone generating means (12) a residual part of the oxygen gas remaining after adsorption of ozone, a coolant supply means (16) for cooling the ozone adsorbing/desorbing means (15), and an ozone discharging means (29, 30) for taking out an ozone containing gas which contains ozone molecules from the ozone adsorbing/desorbing means (15) to thereby supply the ozone containing gas to an ozone consumer (23). The ozone discharging means (29, 30) includes an ozone concentration control means (29) for enabling supply of the ozone containing gas to the ozone consumer (23) substantially at a predetermined ozone concentration and substantially at a predetermined constant flow rate.
Abstract:
In an electric discharge type ozonizer using highly pure oxygen gas having a purity of not lower than 99.99% as a raw material gas, the pressure of a gas in the discharge space of a discharger is raised to a level higher than atmospheric pressure by at least 1.1 kgf/cm.sup.2, and/or in which a liquid-cooled discharger is used, and the temperature of the cooling liquid is set at a level not lower than 15.degree. C., whereby the ozonizer is capable of stably producing ozone gas at a high ozone concentration without causing lowering of the ozone concentration with time.
Abstract:
A corona discharge ozonator is provided that comprises a first electrode, a second electrode and a dielectric material disposed between the electrodes. An ozonization chamber is formed between one of the electrodes and the dielectric material and defines a fluid flow path. A plurality of thermally-conducting solids are within the fluid flow path. Substantially each of the solids touches another of the solids and either the dielectric material or the first or second electrode. These solids transfer heat from the hotter to the cooler of the dielectric and the first or second electrode when one of the electrodes is cooled by a conventional means such as a water bath. Corona discharge ozonators of the invention have improved ozone output and increased ozone production energy efficiency.
Abstract:
A process and apparatus for the recovery of energy from an ozone production unit including an ozone generator supplied with gas from pretreatment units and using ozone produced thereby to treat water. Heat released from the pretreatment units and the ozone generator is collected by a first fluid circulating in a first closed fluid circuit. The first fluid is passed in heat exchange relationship with a second closed fluid circuit having a second fluid. The second fluid is also passed in heat exchange relationship with a third closed fluid circulating circuit having a third fluid. The ozone produced by the ozone generator is used to treat water in a water treatment facility. Any residual ozone being transferred to an ozone destroying reactor which employs the third fluid as a heat exchange medium for destroying the residual ozone.
Abstract:
A cell or apparatus for treating a fluid by electron emission as the fluid is passed through a space between a dielectric layer located on a surface of a first electrode and a second electrode and as the electrodes are operated by an attached, appropriate circuit to cause electron emission within the space can be constructed so as to improve the efficiency of the cell or apparatus and so as to promote the amount of time which the dielectric layer may be used without breakdown. In constructing a cell or apparatus for this purpose cooling jackets are provided for circulating cooling fluids in contact with the surfaces of these electrodes remote from one another. In accordance with the disclosure the pressures of the fluids used in the cooling jackets and the fluid passing through the space of the apparatus or cell are regulated so as to maintain the electrical characteristics of the cell or apparatus substantially constant. This improves the efficiency of the circuit used to power the cell. In achieving such regulation the pressures are also preferably regulated so that there is substantially no deflection or movement of the dielectric layer. This minimizes the chances of such dielectric layer breaking down.
Abstract:
My invention relates to the use of an inert dielectric solvent liquid of fully halogenated fluorocarbon as the solvent for dissolving under pressure air and oxygen; which liquid acts as the dielectric in an ozone generator; and retains the ozone produced in the corona of the generator in solution in the liquid dielectric, until the pressure is reduced.For commercial applications, ozone is generated at the point of use by passing oxygen, or oxygen containing gas such as air, through a high-energy electrical discharge called Corona.The Corona discharge principle is based on a high voltage alternating current between two electrodes which are separated by a layer of dielectric material and a narrow gap through which the oxygen bearing gas is passed. The dielectric is necessary to stabilize the discharge over the entire electrode area so that it does not localize as an intense arc. In the present corona generation of ozone, a substantial fraction of the input energy is converted to heat, which must be removed by heat exchanger.My invention replaces the dielectric of solid materials; with a dielectric liquid which not only acts as the dielectric, but when compounds such as fluorocarbons are used the oxygen is carried through the corona as dissolved oxygen in solution in the dielectric, which also absorbes the excess heat produced, thus cooling the generator. The generator is operated at a superatmospheric pressure, which permits automatic stripping of the ozone by reducing the pressure following the generator.